Multidimensional Conduction-Band Engineering for Maximizing the Continuous-Wave (CW) Wallplug Efficiencies of Mid-Infrared Quantum Cascade Lasers

By tailoring the active-region quantum wells and barriers of 4.5-5.0-μm-emitting quantum cascade lasers (QCLs), the device performances dramatically improve. Deep-well QCLs significantly suppress carrier leakage, as evidenced by high values for the threshold-current characteristic temperature <i>T</i><sub>0</sub> (253 K) and the slope-efficiency characteristic temperature <i>T</i><sub>1</sub> (285 K), but, due to stronger quantum confinement, the global upper-laser-level lifetime τ<sub>4g</sub> decreases, resulting in basically the same room-temperature (RT) threshold-current density <i>J</i><sub>th</sub> as conventional QCLs. Tapered active-region (TA) QCLs, devices for which the active-region barrier heights increase in energy from the injection to the exit barriers, lead to recovery of the τ<sub>4g</sub> value while further suppressing carrier leakage. As a result, experimental RT <i>J</i><sub>th</sub> values from moderate-taper TA 4.8-μm emitting QCLs are ~14% less than for conventional QCLs and <i>T</i><sub>1</sub> reaches values as high as 797 K. A step-taper TA (STA) QCL design provides both complete carrier-leakage suppression and an increase in the τ<sub>4g</sub> value, due to Stark-effect reduction and strong asymmetry. Then, the RT <i>J</i><sub>th</sub> value decreases by at least 25% compared to conventional QCLs of same geometry. In turn, single-facet, RT pulsed and continuous-wave maximum wallplug-efficiency values of 29% and 27% are projected for 4.6-4.8-μm-emitting QCLs.

[1]  Manijeh Razeghi,et al.  High power, continuous wave, room temperature operation of λ ∼ 3.4 μm and λ ∼ 3.55 μm InP-based quantum cascade lasers , 2012 .

[2]  C. Gmachl,et al.  Widely voltage tunable quantum cascade lasers , 2009, 2009 Conference on Lasers and Electro-Optics and 2009 Conference on Quantum electronics and Laser Science Conference.

[3]  Mattias Beck,et al.  Electrically tunable, high performance quantum cascade laser , 2010 .

[4]  J.E.L. Hollis,et al.  Solid-State and Semiconductor Physics , 1967 .

[5]  Jérôme Faist,et al.  Wallplug efficiency of quantum cascade lasers: Critical parameters and fundamental limits , 2007 .

[6]  Mykhaylo P. Semtsiv,et al.  Thermally activated leakage current in high-performance short-wavelength quantum cascade lasers , 2013 .

[7]  J. Yu,et al.  Thermal analysis of short wavelength InGaAs/InAlAs quantum cascade lasers , 2010 .

[8]  Manijeh Razeghi,et al.  High-power high-wall plug efficiency mid-infrared quantum cascade lasers based on InP/GaInAs/InAlAs material system , 2009, OPTO.

[9]  C. Caneau,et al.  Room Temperature CW Operation of Short Wavelength Quantum Cascade Lasers Made of Strain Balanced Ga $_{\bm x}$In$_{\bm {1-x}}$ As/Al$_{\bm y}$ In$_{\bm {1-y}}$As Material on InP Substrates , 2011, IEEE Journal of Selected Topics in Quantum Electronics.

[10]  A. Bismuto,et al.  Fully automatized quantum cascade laser design by genetic optimization , 2012 .

[11]  Dan Botez,et al.  Tapered active-region, mid-infrared quantum cascade lasers for complete suppression of carrier-leakage currents , 2012, OPTO.

[12]  Serge Luryi,et al.  Widely tunable type-II interband cascade laser , 2006 .

[13]  J. Faist,et al.  Chapter 1 Quantum Cascade Laser , 1999 .

[14]  M. Semtsiv,et al.  Low-threshold intersubband laser based on interface-scattering-rate engineering , 2012 .

[15]  Manijeh Razeghi,et al.  Watt level performance of quantum cascade lasers in room temperature continuous wave operation at λ∼3.76 μm , 2010 .

[16]  Dan Botez,et al.  Design considerations and analytical approximations for high continuous-wave power, broad-waveguide diode lasers , 1999 .

[17]  L. Mawst,et al.  Metalorganic vapor phase growth of quantum well structures on thick metamorphic buffer layers grown by hydride vapor phase epitaxy , 2013 .

[18]  Vincenzo Spagnolo,et al.  Influence of InAs, AlAs δ layers on the optical, electronic, and thermal characteristics of strain-compensated GaInAs∕AlInAs quantum-cascade lasers , 2007 .

[19]  Manijeh Razeghi,et al.  Room temperature continuous wave operation of quantum cascade lasers with 12.5% wall plug efficiency , 2008 .

[20]  Carlo Sirtori,et al.  Laser action by tuning the oscillator strength , 1997, Nature.

[21]  D. Botez Comment on “Highly temperature insensitive quantum cascade lasers” [Appl. Phys. Lett.97, 251104 (2010)] , 2011 .

[22]  Manijeh Razeghi,et al.  Highly temperature insensitive quantum cascade lasers , 2010 .

[23]  D. Boteza Comment on Highly temperature insensitive quantum cascade lasers , 2011 .

[24]  Jerry R. Meyer,et al.  Temperature dependence of the key electro-optical characteristics for midinfrared emitting quantum cascade lasers , 2010 .

[25]  Jerry R. Meyer,et al.  Electron leakage and its suppression via deep-well structures in 4.5- to 5.0-μm-emitting quantum cascade lasers , 2010 .

[26]  Manijeh Razeghi,et al.  Buried heterostructure quantum cascade lasers with high continuous-wave wall plug efficiency , 2007 .

[27]  Qi Jie Wang,et al.  3 W Continuous-Wave Room Temperature Single-Facet Emission From Quantum Cascade Lasers Based On Nonresonant Extraction Design Approach , 2009 .

[28]  C. Sirtori,et al.  Resonant Stark tuning of second‐order susceptibility in coupled quantum wells , 1992 .

[29]  Dan Botez,et al.  Highly temperature insensitive, deep-well 4.8 μm emitting quantum cascade semiconductor lasers , 2009 .

[30]  L. Mawst,et al.  InGaAs/AlInAs strain-compensated Superlattices grown on metamorphic buffer layers for low-strain, 3.6 μm-emitting quantum-cascade-laser active regions , 2013 .

[31]  Jerry R. Meyer,et al.  The temperature dependence of key electro-optical characteristics for mid-infrared emitting quantum cascade lasers , 2011, OPTO.

[32]  Manijeh Razeghi,et al.  Room temperature quantum cascade lasers with 27% wall plug efficiency , 2011 .

[33]  Influence of the growth temperature on the performances of strain-balanced quantum cascade lasers , 2011 .

[35]  J. Wagner,et al.  Wall-plug efficiency of mid-infrared quantum cascade lasers , 2012 .

[36]  C. Gmachl,et al.  Voltage Tunability of Quantum Cascade Lasers , 2009, IEEE Journal of Quantum Electronics.

[37]  Dan Botez,et al.  Ultra-low temperature sensitive deep-well quantum cascade lasers (λ - 4.8 μm) via uptapering conduction band edge of injector region , 2009 .

[38]  Federico Capasso,et al.  High power thermoelectrically cooled and uncooled quantum cascade lasers with optimized reflectivity facet coatings , 2009 .

[39]  L. Mawst,et al.  Crystal growth via metal–organic vapor phase epitaxy of quantum-cascade-laser structures composed of multiple alloy compositions , 2012 .

[40]  Manijeh Razeghi,et al.  Room temperature continuous wave operation of quantum cascade lasers with watt-level optical power , 2008 .

[41]  Peter Michael Smowton,et al.  The differential efficiency of quantum well lasers , 1996 .