Genealogies in simple models of evolution

We review the statistical properties of the genealogies of a few models of evolution. In the asexual case, selection leads to coalescence times which grow logarithmically with the size of the population in contrast with the linear growth of the neutral case. Moreover for a whole class of models, the statistics of the genealogies are those of the Bolthausen-Sznitman coalescent rather than the Kingman coalescent in the neutral case. For sexual reproduction, the time to reach the first common ancestors to the whole population and the time for all individuals to have all their ancestors in common are also logarithmic in the neutral case, as predicted by Chang []. We discuss how these times are modified in a simple way of introducing selection.

[1]  E. Bolthausen,et al.  On Ruelle's Probability Cascades and an Abstract Cavity Method , 1998 .

[2]  M. Nordborg,et al.  Coalescent Theory , 2019, Handbook of Statistical Genomics.

[3]  G. Parisi The order parameter for spin glasses: a function on the interval 0-1 , 1980 .

[4]  J. Pitman Coalescents with multiple collisions , 1999 .

[5]  M. Serva On the genealogy of populations: trees, branches and offspring , 2005, q-bio/0503036.

[6]  The survival probability of a branching random walk in presence of an absorbing wall , 2007, cond-mat/0703353.

[7]  Giorgio Parisi,et al.  Infinite Number of Order Parameters for Spin-Glasses , 1979 .

[8]  J. Kingman On the genealogy of large populations , 1982, Journal of Applied Probability.

[9]  B. Derrida,et al.  How genealogies are affected by the speed of evolution , 2011, 1107.2227.

[10]  E. Brunet,et al.  Noisy traveling waves: Effect of selection on genealogies , 2006 .

[11]  M. Mézard,et al.  Replica symmetry breaking and the nature of the spin glass phase , 1984 .

[12]  J. T. Cox,et al.  Coalescing Random Walks and Voter Model Consensus Times on the Torus in $\mathbb{Z}^d$ , 1989 .

[13]  B. Derrida,et al.  Effect of selection on ancestry: an exactly soluble case and its phenomenological generalization. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[14]  N. Berestycki,et al.  The genealogy of branching Brownian motion with absorption , 2010, 1001.2337.

[15]  Joachim Krug,et al.  Evolutionary trajectories in rugged fitness landscapes , 2005, q-bio/0501028.

[16]  Stephen M. Krone,et al.  The genealogy of samples in models with selection. , 1997, Genetics.

[17]  V. Limic,et al.  The spatial $\Lambda$-coalescent , 2005, math/0511536.

[18]  R. Griffiths,et al.  Lines of descent in the diffusion approximation of neutral Wright-Fisher models. , 1980, Theoretical population biology.

[19]  H. Kesten Branching brownian motion with absorption , 1978 .

[20]  C. Fischer Handbook of statistical genetics: , 2002, Human Genetics.

[21]  B. Derrida,et al.  Evolution of the most recent common ancestor of a population with no selection , 2006, cond-mat/0601167.

[22]  M. Mézard,et al.  Spin Glass Theory and Beyond , 1987 .

[23]  N. S. Barnett,et al.  Private communication , 1969 .

[24]  B Derrida,et al.  On the genealogy of a population of biparental individuals. , 2000, Journal of theoretical biology.

[25]  Lev Tsimring,et al.  Evolution on a smooth landscape , 1996, cond-mat/9607174.

[26]  Bernard Derrida,et al.  From random walks to spin glasses , 1997 .

[27]  Jason Schweinsberg Coalescent processes obtained from supercritical Galton-Watson processes , 2003 .

[28]  S. Kirkpatrick,et al.  Infinite-ranged models of spin-glasses , 1978 .

[29]  Noah A. Rosenberg,et al.  Genealogical trees, coalescent theory and the analysis of genetic polymorphisms , 2002, Nature Reviews Genetics.

[30]  Vlada Limic,et al.  The spatial -coalescent , 2006 .

[31]  B. Derrida,et al.  Universal tree structures in directed polymers and models of evolving populations. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[32]  S. Kirkpatrick,et al.  Solvable Model of a Spin-Glass , 1975 .

[33]  W. Ewens The sampling theory of selectively neutral alleles. , 1972, Theoretical population biology.

[34]  M. Möhle,et al.  On the extended Moran model and its relation to coalescents with multiple collisions. , 2013, Theoretical population biology.

[35]  Phenomenological theory giving the full statistics of the position of fluctuating pulled fronts. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[36]  N L Kaplan,et al.  The coalescent process in models with selection and recombination. , 1988, Genetics.

[37]  B. Derrida,et al.  Evolution in a flat fitness landscape , 1991 .

[38]  Bak,et al.  Punctuated equilibrium and criticality in a simple model of evolution. , 1993, Physical review letters.

[39]  N. Barton,et al.  The effect of selection on genealogies. , 2004, Genetics.

[40]  Rick Durrett,et al.  A coalescent model for the effect of advantageous mutations on the genealogy of a population , 2004, math/0411071.

[41]  A. Etheridge,et al.  Rate of Adaptation of Large Populations , 2008 .

[42]  C. Wilke,et al.  The traveling-wave approach to asexual evolution: Muller's ratchet and speed of adaptation. , 2007, Theoretical population biology.

[43]  Nathanael Berestycki,et al.  Recent progress in coalescent theory , 2009, Ensaios Matemáticos.

[44]  Branching Brownian motion with selection of the N right-most particles: An approximate model , 2011, 1112.0266.

[45]  P Donnelly,et al.  Coalescents and genealogical structure under neutrality. , 1995, Annual review of genetics.

[46]  R. Hudson Gene genealogies and the coalescent process. , 1990 .

[47]  F. Tajima Evolutionary relationship of DNA sequences in finite populations. , 1983, Genetics.

[48]  A. Etheridge Some Mathematical Models from Population Genetics , 2011 .

[49]  Giorgio Parisi,et al.  Order parameter for spin-glasses , 1983 .

[50]  S. Tavaré,et al.  Line-of-descent and genealogical processes, and their applications in population genetics models. , 1984, Theoretical population biology.

[51]  Michael M. Desai,et al.  The Speed of Evolution and Maintenance of Variation in Asexual Populations , 2007, Current Biology.

[52]  Martin Möhle,et al.  A Classification of Coalescent Processes for Haploid Exchangeable Population Models , 2001 .

[53]  Brendan D. O'Fallon,et al.  A continuous-state coalescent and the impact of weak selection on the structure of gene genealogies. , 2010, Molecular biology and evolution.

[54]  M. Serva,et al.  Genealogical trees from genetic distances , 2009, 0901.3251.

[55]  Joseph T. Chang Recent common ancestors of all present-day individuals , 1999, Advances in Applied Probability.

[56]  C. J-F,et al.  THE COALESCENT , 1980 .

[57]  Douglas L. T. Rohde,et al.  Modelling the recent common ancestry of all living humans , 2004, Nature.

[58]  W. Li,et al.  Estimating the age of the common ancestor of a sample of DNA sequences. , 1997, Molecular biology and evolution.

[59]  B. Shraiman,et al.  Rate of Adaptation in Large Sexual Populations , 2010, Genetics.