Speciation of nickel by HPLC-UV/MS in pea nodules.

[1]  N. von Wirén,et al.  Hydrophilic interaction chromatography of small metal species in plants using sulfobetaine- and phosphorylcholine-type zwitterionic stationary phases. , 2008, Journal of separation science.

[2]  Guillaume Echevarria,et al.  Identification of nickel chelators in three hyperaccumulating plants: an X-ray spectroscopic study. , 2008, Phytochemistry.

[3]  B. Brito,et al.  Host-dependent expression of Rhizobium leguminosarum bv. viciae hydrogenase is controlled at transcriptional and post-transcriptional levels in legume nodules. , 2008, Molecular plant-microbe interactions : MPMI.

[4]  U. Roessner,et al.  LC-MS and GC-MS metabolite profiling of nickel(II) complexes in the latex of the nickel-hyperaccumulating tree Sebertia acuminata and identification of methylated aldaric acid as a new nickel(II) ligand. , 2008, Phytochemistry.

[5]  Michael J. Haydon,et al.  Transporters of ligands for essential metal ions in plants. , 2007, The New phytologist.

[6]  W. E. Rauser Structure and function of metal chelators produced by plants , 2007, Cell Biochemistry and Biophysics.

[7]  R. Łobiński,et al.  Speciation of non-covalent nickel species in plant tissue extracts by electrospray Q-TOFMS/MS after their isolation by 2D size exclusion-hydrophilic interaction LC (SEC-HILIC) monitored by ICP-MS , 2006 .

[8]  K. Walsh,et al.  Detection and quantification of ligands involved in nickel detoxification in a herbaceous Ni hyperaccumulator Stackhousia tryonii Bailey. , 2005, Journal of experimental botany.

[9]  Alan J. M. Baker,et al.  Metal ion ligands in hyperaccumulating plants , 2005, JBIC Journal of Biological Inorganic Chemistry.

[10]  Philip S. Poole,et al.  Metabolism of Rhizobium Bacteroids , 2003 .

[11]  G. Záray,et al.  Hyphenated technique for investigation of nickel complexation by citric acid in xylem sap of cucumber plants , 2002 .

[12]  B. Brito,et al.  Engineering the Rhizobium leguminosarum bv. viciae Hydrogenase System for Expression in Free-Living Microaerobic Cells and Increased Symbiotic Hydrogenase Activity , 2002, Applied and Environmental Microbiology.

[13]  F. Fodor,et al.  Determination of organic acids and their role in nickel transport within cucumber plants , 2000 .

[14]  J. Monza,et al.  Nickel Availability and hupSL Activation by Heterologous Regulators Limit Symbiotic Expression of theRhizobium leguminosarum bv. Viciae Hydrogenase System in Hup− Rhizobia , 2000, Applied and Environmental Microbiology.

[15]  P. Marriott,et al.  Separation of zinc dialkyldithiophosphates in lubricating oil additives by normal-phase high-performance liquid chromatography , 1996 .

[16]  Juan Barceló,et al.  Zinc hyperaccumulation in Thlaspi caerulescens. II. Influence on organic acids , 1996 .

[17]  J. Meyer,et al.  Uptake of iron by symbiosomes and bacteroids from soybean nodules , 1995, FEBS letters.

[18]  T. Bisseling,et al.  Temporal and spatial co-expression of hydrogenase and nitrogenase genes from Rhizobium leguminosarum bv. viciae in pea (Pisum satiivum L.) root nodules. , 1995 .

[19]  B. Brito,et al.  Nickel availability to pea (Pisum sativum L.) plants limits hydrogenase activity of Rhizobium leguminosarum bv. viciae bacteroids by affecting the processing of the hydrogenase structural subunits , 1994, Journal of bacteriology.

[20]  T. Janjić,et al.  Thin-layer chromatography on polyacrylonitrile: IV. Investigation of the separation mechanisms for tris-(alkylxanthato)cobalt(III) complexes , 1992 .

[21]  Ž. Tešić,et al.  Effect of the substituents of β-diketonato ligands on RF values of tris(chelate) transition metal complexes obtained by normal- and reversed-phase thin-layer chromatography on unmodified silica gel , 1991 .

[22]  F. Homer,et al.  Characterization of the nickel-rich extract from the nickel hyperaccumulator Dichapetalum gelonioides , 1991 .

[23]  J. Vincent A manual for the practical study of root-nodule bacteria , 1971 .