Fast and scalable synthesis of durable Na0.44MnO2 cathode material via an oxalate precursor method for Na-ion batteries

Abstract Na 0.44 MnO 2 has aroused global interest as a promising cathode material for sodium ion batteries due to its unique tunnel structure. Rod-like Na 0.44 MnO 2 is synthesized here via a simple, fast and environment-friendly oxalate precursor-based process, and the electrochemical performances, as well as the structural evolution within the electrode redox process and the chemical mechanism for material synthesis, are systematically investigated. The Na 0.44 MnO 2 material prepared at 900 °C for 3 h (denoted as NMO-9003) possesses the highest reversible capacity of 120 mAh g −1 at 0.2 C and an optimal rate capacity of 106 mAh g −1  at 1 C, while its long-term capacity retention is 86% after 500 cycles at 20 C, indicating superior structural reversibility. In addition, the NMO-9003 sample shows the fastest cationic diffusion rate at approximately 1.2 × 10 −13  cm 2  s −1 . The density functional theory (DFT)-based calculation is adopted to explore the lattice variation of Na 0.44 MnO 2 upon the electrode process, which confirms that the host structure bears a minor volume change approximately 7% from 2.0 to 3.8 V, well demonstrating the origin of excellent reversibility.

[1]  C. Fisher,et al.  Lithium and sodium battery cathode materials: computational insights into voltage, diffusion and nanostructural properties. , 2014, Chemical Society reviews.

[2]  Yong‐Sheng Hu,et al.  Hard Carbon Microtubes Made from Renewable Cotton as High‐Performance Anode Material for Sodium‐Ion Batteries , 2016 .

[3]  Jean-Marie Tarascon,et al.  Hunting for Better Li-Based Electrode Materials via Low Temperature Inorganic Synthesis† , 2010 .

[4]  Xiangyun Song,et al.  Na 0.44 MnO 2 with very fast sodium diffusion and stable cycling synthesized via polyvinylpyrrolidone-combustion method , 2015 .

[5]  Shinichi Komaba,et al.  Research development on sodium-ion batteries. , 2014, Chemical reviews.

[6]  Tatsuya Saito,et al.  High power Na-ion rechargeable battery with single-crystalline Na0.44MnO2 nanowire electrode , 2012 .

[7]  Yan Hou,et al.  Effects of the starting materials of Na0.44MnO2 cathode materials on their electrochemical properties for Na-ion batteries , 2016 .

[8]  Alasdair J. Crawford,et al.  The importance of solid electrolyte interphase formation for long cycle stability full-cell Na-ion batteries , 2016 .

[9]  Jean-Marie Tarascon,et al.  Is lithium the new gold? , 2010, Nature chemistry.

[10]  Nam-Soon Choi,et al.  Charge carriers in rechargeable batteries: Na ions vs. Li ions , 2013 .

[11]  H. Hayakawa,et al.  Single-Crystal Synthesis and Structure Refinement of Na0.44MnO2 , 2011 .

[12]  Yiying Wu,et al.  Formation of Na0.44MnO2 nanowires via stress-induced splitting of birnessite nanosheets , 2009 .

[13]  Gerbrand Ceder,et al.  Electrode Materials for Rechargeable Sodium‐Ion Batteries: Potential Alternatives to Current Lithium‐Ion Batteries , 2012 .

[14]  Liwei Zhao,et al.  FLUX SYNTHESIS OF Na0.44MnO2 NANORIBBONS AND THEIR ELECTROCHEMICAL PROPERTIES FOR Na-ION BATTERIES , 2013 .

[15]  Philippe Moreau,et al.  Structure and Stability of Sodium Intercalated Phases in Olivine FePO4 , 2010 .

[16]  Jun Wang,et al.  Durable high-rate capability Na0.44MnO2 cathode material for sodium-ion batteries , 2016 .

[17]  Haoshen Zhou,et al.  Synthesis of single crystalline electro-conductive Na0.44MnO2 nanowires with high aspect ratio for the fast charge–discharge Li ion battery , 2008 .

[18]  Kathryn E. Toghill,et al.  A multifunctional 3.5 V iron-based phosphate cathode for rechargeable batteries. , 2007, Nature materials.

[19]  Yu-Guo Guo,et al.  High-quality Prussian blue crystals as superior cathode materials for room-temperature sodium-ion batteries , 2014 .

[20]  Y. Chiang,et al.  Towards High Power High Energy Aqueous Sodium‐Ion Batteries: The NaTi2(PO4)3/Na0.44MnO2 System , 2013 .

[21]  Dong-Hwa Seo,et al.  Ab Initio Study of the Sodium Intercalation and Intermediate Phases in Na0.44MnO2 for Sodium-Ion Battery , 2012 .

[22]  Xu Xu,et al.  Effect of Carbon Matrix Dimensions on the Electrochemical Properties of Na3V2(PO4)3 Nanograins for High‐Performance Symmetric Sodium‐Ion Batteries , 2014, Advanced materials.

[23]  Xuan Zhou,et al.  Synthesis and characterization of Na0.44MnO2 from solution precursors , 2013 .

[24]  S. Jiao,et al.  Facile Synthesis of Nanorod-like Single Crystalline Na0.44MnO2 for High Performance Sodium-Ion Batteries , 2015 .

[25]  Jay F. Whitacre,et al.  Relating Synthesis Conditions and Electrochemical Performance for the Sodium Intercalation Compound Na4Mn9O18 in Aqueous Electrolyte , 2010 .

[26]  J. Whitacre,et al.  Na4Mn9O18 as a positive electrode material for an aqueous electrolyte sodium-ion energy storage device , 2010 .

[27]  M. Doeff,et al.  Synthesis and characterization of a copper-substituted manganese oxide with the Na0.44MnO2 structure , 2002 .

[28]  Jean-Marie Tarascon,et al.  Crystal structure and electrochemical properties vs. Na+ of the sodium fluorophosphate Na1.5VOPO4F0.5 , 2006 .

[29]  M. Green,et al.  Coupled commensurate cation and charge modulation in the tunneled structure, Na(0.40(2))MnO(2). , 2011, Journal of the American Chemical Society.

[30]  Yan Zhao,et al.  Electrochemical Properties of an Na4Mn9O18-Reduced Graphene Oxide Composite Synthesized via Spray Drying for an Aqueous Sodium-Ion Battery , 2017, Nanomaterials.

[31]  Pierre Kubiak,et al.  Crystal chemistry of Na insertion/deinsertion in FePO4–NaFePO4 , 2012 .

[32]  P. Hagenmuller,et al.  Sur quelques nouvelles phases de formule NaxMnO2 (x ⩽ 1) , 1971 .

[33]  Jianping He,et al.  A novel sol–gel synthesis route to NaVPO4F as cathode material for hybrid lithium ion batteries , 2010 .

[34]  Linda F Nazar,et al.  The emerging chemistry of sodium ion batteries for electrochemical energy storage. , 2015, Angewandte Chemie.

[35]  Liwei Zhao,et al.  Na0.44MnO2–CNT electrodes for non-aqueous sodium batteries , 2013 .

[36]  V. Battaglia,et al.  Revealing and suppressing surface Mn(II) formation of Na0.44MnO2 electrodes for Na-ion batteries , 2015 .

[37]  S. Altın,et al.  Growth mechanism and magnetic and electrochemical properties of Na0.44MnO2 nanorods as cathode material for Na-ion batteries , 2015 .

[38]  Zhenguo Yang,et al.  Reversible Sodium Ion Insertion in Single Crystalline Manganese Oxide Nanowires with Long Cycle Life , 2011, Advanced materials.

[39]  Tomoyuki Matsuda,et al.  A sodium manganese ferrocyanide thin film for Na-ion batteries. , 2013, Chemical communications.

[40]  R. Axelbaum,et al.  Spray pyrolysis and electrochemical performance of Na_0.44MnO_2 for sodium-ion battery cathodes , 2017 .

[41]  F. Du,et al.  Carbon coated Li3V2(PO4)3 cathode material prepared by a PVA assisted sol–gel method , 2010 .

[42]  Xuan Zhou,et al.  High-rate performance electrospun Na0.44MnO2 nanofibers as cathode material for sodium-ion batteries , 2016 .

[43]  M. Doeff,et al.  Electrode Materials with the Na0.44MnO2 Structure: Effect ofTitanium Substitution on Physical and Electrochemical Properties , 2008 .

[44]  J-M Tarascon,et al.  Study of the insertion/deinsertion mechanism of sodium into Na0.44MnO2. , 2007, Inorganic chemistry.

[45]  Zhe Hu,et al.  Multiangular Rod-Shaped Na0.44MnO2 as Cathode Materials with High Rate and Long Life for Sodium-Ion Batteries. , 2017, ACS applied materials & interfaces.

[46]  L. Nazar,et al.  Sodium and sodium-ion energy storage batteries , 2012 .

[47]  K. Du,et al.  Na3V2(PO4)3 as cathode material for hybrid lithium ion batteries , 2013 .