Wide field‐of‐view soft X‐ray imaging for solar wind‐magnetosphere interactions
暂无分享,去创建一个
David G. Sibeck | Kip D. Kuntz | Brian M. Walsh | S. L. Snowden | Andrew M. Read | J. A. Carter | Frederick S. Porter | Michael R. Collier | Y. M. Collado-Vega | Thomas E. Cravens | Nicholas Thomas | F. Porter | H. Connor | J. Carter | D. Sibeck | N. Thomas | T. Cravens | S. Sembay | S. Snowden | K. Kuntz | A. Read | B. Walsh | S. Sembay | M. Collier | H. K. Connor | Steven Sembay | Y. Collado‐Vega | Y. Collado-Vega | K. D. Kuntz | Andrew M. Read | J. Carter | M. R. Collier | Brian M. Walsh | F. S. Porter | H. Connor | N. Thomas
[1] P. Kirkpatrick,et al. Formation of optical images by X-rays. , 1948, Journal of the Optical Society of America.
[2] H. Wolter. Spiegelsysteme streifenden Einfalls als abbildende Optiken für Röntgenstrahlen , 1952 .
[3] B. Aschenbach,et al. X-ray telescopes , 1985 .
[4] M. Smith,et al. the pulsating cusp , 1990 .
[5] C. Russell,et al. Model of the formation of the low-latitude boundary layer for strongly northward interplanetary magnetic field , 1992 .
[6] David G. Sibeck,et al. Magnetopause shape as a bivariate function of interplanetary magnetic field Bz and solar wind dynamic pressure , 1993 .
[7] Christopher T. Russell,et al. An empirical model of the size and shape of the near-earth magnetotail , 1993 .
[8] R. Hodges,et al. Monte Carlo simulation of the terrestrial hydrogen exosphere , 1994 .
[9] A. Mavretic,et al. SWE, a comprehensive plasma instrument for the WIND spacecraft , 1995 .
[10] R. Lundin,et al. Origin of energetic ions in the polar cusp inferred from ion composition measurements by the Viking satellite , 1995 .
[11] M. Lockwood,et al. THE CONTRIBUTION OF FLUX-TRANSFER EVENTS TO CONVECTION , 1995 .
[12] F. Mariani,et al. The WIND magnetic field investigation , 1995 .
[13] T. Boller,et al. THE ROSAT ALL-SKY SURVEY BRIGHT SOURCE CATALOGUE , 1996, astro-ph/9909315.
[14] G. Gloeckler,et al. Neon-20, oxygen-16, and helium-4 densities, temperatures, and suprathermal tails in the solar wind determined with WIND/MASS , 1996 .
[15] M. J. Mumma,et al. Discovery of X-ray and Extreme Ultraviolet Emission from Comet C/Hyakutake 1996 B2 , 1996, Science.
[16] Thomas E. Cravens,et al. Comet Hyakutake x‐ray source: Charge transfer of solar wind heavy ions , 1997 .
[17] Dan McCammon,et al. ROSAT Survey Diffuse X-Ray Background Maps. II. , 1997 .
[18] M. Freyberg. On the zero-level of the soft X-ray background , 1997 .
[19] Hideaki Kawano,et al. Magnetopause location under extreme solar wind conditions , 1998 .
[20] P. Roe,et al. A Solution-Adaptive Upwind Scheme for Ideal Magnetohydrodynamics , 1999 .
[21] C. Russell,et al. The polar cusp location and its dependence on dipole tilt , 1999 .
[22] M. Grande,et al. Use of Fe charge state changes as a tracer for solar wind entry to the magnetosphere , 2000 .
[23] S. Snowden,et al. Deconstructing the Spectrum of the Soft X-Ray Background , 2000 .
[24] P. Brandt,et al. Bastille Day storm: Global response of the terrestrial ring current , 2001 .
[25] Steven L. Snowden,et al. Temporal variations of geocoronal and heliospheric X‐ray emission associated with the solar wind interaction with neutrals , 2001 .
[26] T. Fuller‐Rowell,et al. Global Simulation of Magnetospheric Space Weather Effects of the Bastille Day Storm , 2001 .
[27] J. K. Chao,et al. Models for the size and shape of the earth's magnetopause and bow shock , 2002 .
[28] K. Dennerl. Discovery of X-rays from Mars with Chandra , 2002, astro-ph/0211215.
[29] J. Lean,et al. Ionospheric and dayglow responses to the radiative phase of the Bastille Day flare , 2002 .
[30] K. Dennerl,et al. Discovery of X-rays from Venus with Chandra , 2002, astro-ph/0204263.
[31] T. Zurbuchen,et al. Kinetic properties of heavy solar wind ions from Ulysses-SWICS , 2002 .
[32] S. Fuselier,et al. Continuous magnetic reconnection at Earth's magnetopause , 2003, Nature.
[33] D. Odstrcil. Modeling 3-D solar wind structure , 2003 .
[34] S. L. Snowden,et al. XMM-Newton Observation of Solar Wind Charge Exchange Emission , 2004, astro-ph/0404354.
[35] A. Ridley,et al. Transpolar potential saturation models compared , 2004 .
[36] M. Markevitch,et al. CHANDRA OBSERVATIONS OF THE ''DARK'' MOON AND GEOCORONAL SOLAR WIND CHARGE TRANSFER , 2004, astro-ph/0402247.
[37] Keisuke Hosokawa,et al. Monitoring the high‐altitude cusp with the Low Energy Neutral Atom imager: Simultaneous observations from IMAGE and Polar , 2005 .
[38] David R. Chesney,et al. Space Weather Modeling Framework: A new tool for the space science community , 2005, Journal of Geophysical Research.
[39] Joachim Raeder,et al. Polar cap potential saturation during large geomagnetic storms , 2005 .
[40] K. Papadopoulos,et al. Global MHD simulations of the strongly driven magnetosphere: Modeling of the transpolar potential saturation , 2005 .
[41] S. Boardsen,et al. Low-energy neutral atom signatures of magnetopause motion in response to southward Bz , 2005 .
[42] E. Quémerais,et al. Charge-transfer induced EUV and soft X-ray emissions in the heliosphere , 2006 .
[43] Harvard-Smithsonian Center for Astrophysics,et al. Charge-Transfer induced EUV and Soft X-ray emissions in the Heliosphere , 2006 .
[44] Ryuichi Fujimoto,et al. Evidence for Solar-Wind Charge-Exchange X-Ray Emission from the Earth's Magnetosheath(Chapter 4. Warm and Hot IntraGalactic Medium, The Extreme Universe in the Suzaku Era) , 2006, astro-ph/0609308.
[45] A. M. Read,et al. Identifying XMM-Newton observations affected by solar wind charge exchange - Part II , 2008, 1101.1848.
[46] S. Sembay,et al. Identifying XMM-Newton observations affected by solar wind charge exchange. Part I , 2008, 0807.3624.
[47] A. M. Read,et al. A high charge state coronal mass ejection seen through solar wind charge exchange emission as detected by XMM–Newton , 2009, 0911.0897.
[48] J. Carter,et al. Identifying XMM‐Newton observations affected by Solar Wind Charge Exchange , 2009 .
[49] C. H. Whitford,et al. The mercury imaging X-ray spectrometer (MIXS) on BepiColombo , 2010 .
[50] Ryuichi Fujimoto,et al. Time Variability of the Geocoronal Solar-Wind Charge Exchange in the Direction of the Celestial Equator , 2010, 1006.5253.
[51] Peter Wurz,et al. Energetic neutral atoms from the Earth's subsolar magnetopause , 2010 .
[52] E. Möbius,et al. Neutral atom imaging of the magnetospheric cusps , 2011 .
[53] M. Gruntman,et al. Experimental study of exospheric hydrogen atom distributions by Lyman-alpha detectors on the TWINS mission , 2011 .
[54] Dhiren Kataria,et al. AXIOM: advanced X-ray imaging of the magnetosphere , 2011, 1107.0680.
[55] Quentin F. Stout,et al. Adaptive numerical algorithms in space weather modeling , 2012, J. Comput. Phys..
[56] David G. Sibeck,et al. Prototyping a global soft X-ray imaging instrument for heliophysics, planetary science, and astrophysics science , 2012 .
[57] H. K. Hills,et al. On lunar exospheric column densities and solar wind access beyond the terminator from ROSAT soft X‐ray observations of solar wind charge exchange , 2013 .
[58] F. Porter,et al. The origin of the local 1/4-keV X-ray flux in both charge exchange and a hot bubble , 2014, Nature.
[59] M. Juda,et al. OBSERVATION AND MODELING OF GEOCORONAL CHARGE EXCHANGE X-RAY EMISSION DURING SOLAR WIND GUSTS , 2014 .
[60] T. Sun,et al. X‐ray imaging of Kelvin‐Helmholtz waves at the magnetopause , 2015 .
[61] F. Porter,et al. Invited Article: First flight in space of a wide-field-of-view soft x-ray imager using lobster-eye optics: Instrument description and initial flight results. , 2015, The Review of scientific instruments.
[62] F. Porter,et al. THE SOLAR WIND CHARGE-EXCHANGE PRODUCTION FACTOR FOR HYDROGEN , 2015, 1503.04756.
[63] D. Welling,et al. Density variations in the Earth's magnetospheric cusps , 2016 .