Wide field‐of‐view soft X‐ray imaging for solar wind‐magnetosphere interactions

Soft X‐ray imagers can be used to study the mesoscale and macroscale density structures that occur whenever and wherever the solar wind encounters neutral atoms at comets, the Moon, and both magnetized and unmagnetized planets. Charge exchange between high charge state solar wind ions and exospheric neutrals results in the isotropic emission of soft X‐ray photons with energies from 0.1 to 2.0 keV. At Earth, this process occurs primarily within the magnetosheath and cusps. Through providing a global view, wide field‐of‐view imaging can determine the significance of the various proposed solar wind‐magnetosphere interaction mechanisms by evaluating their global extent and occurrence patterns. A summary of wide field‐of‐view (several to tens of degrees) soft X‐ray imaging is provided including slumped micropore microchannel reflectors, simulated images, and recent flight results.

[1]  P. Kirkpatrick,et al.  Formation of optical images by X-rays. , 1948, Journal of the Optical Society of America.

[2]  H. Wolter Spiegelsysteme streifenden Einfalls als abbildende Optiken für Röntgenstrahlen , 1952 .

[3]  B. Aschenbach,et al.  X-ray telescopes , 1985 .

[4]  M. Smith,et al.  the pulsating cusp , 1990 .

[5]  C. Russell,et al.  Model of the formation of the low-latitude boundary layer for strongly northward interplanetary magnetic field , 1992 .

[6]  David G. Sibeck,et al.  Magnetopause shape as a bivariate function of interplanetary magnetic field Bz and solar wind dynamic pressure , 1993 .

[7]  Christopher T. Russell,et al.  An empirical model of the size and shape of the near-earth magnetotail , 1993 .

[8]  R. Hodges,et al.  Monte Carlo simulation of the terrestrial hydrogen exosphere , 1994 .

[9]  A. Mavretic,et al.  SWE, a comprehensive plasma instrument for the WIND spacecraft , 1995 .

[10]  R. Lundin,et al.  Origin of energetic ions in the polar cusp inferred from ion composition measurements by the Viking satellite , 1995 .

[11]  M. Lockwood,et al.  THE CONTRIBUTION OF FLUX-TRANSFER EVENTS TO CONVECTION , 1995 .

[12]  F. Mariani,et al.  The WIND magnetic field investigation , 1995 .

[13]  T. Boller,et al.  THE ROSAT ALL-SKY SURVEY BRIGHT SOURCE CATALOGUE , 1996, astro-ph/9909315.

[14]  G. Gloeckler,et al.  Neon-20, oxygen-16, and helium-4 densities, temperatures, and suprathermal tails in the solar wind determined with WIND/MASS , 1996 .

[15]  M. J. Mumma,et al.  Discovery of X-ray and Extreme Ultraviolet Emission from Comet C/Hyakutake 1996 B2 , 1996, Science.

[16]  Thomas E. Cravens,et al.  Comet Hyakutake x‐ray source: Charge transfer of solar wind heavy ions , 1997 .

[17]  Dan McCammon,et al.  ROSAT Survey Diffuse X-Ray Background Maps. II. , 1997 .

[18]  M. Freyberg On the zero-level of the soft X-ray background , 1997 .

[19]  Hideaki Kawano,et al.  Magnetopause location under extreme solar wind conditions , 1998 .

[20]  P. Roe,et al.  A Solution-Adaptive Upwind Scheme for Ideal Magnetohydrodynamics , 1999 .

[21]  C. Russell,et al.  The polar cusp location and its dependence on dipole tilt , 1999 .

[22]  M. Grande,et al.  Use of Fe charge state changes as a tracer for solar wind entry to the magnetosphere , 2000 .

[23]  S. Snowden,et al.  Deconstructing the Spectrum of the Soft X-Ray Background , 2000 .

[24]  P. Brandt,et al.  Bastille Day storm: Global response of the terrestrial ring current , 2001 .

[25]  Steven L. Snowden,et al.  Temporal variations of geocoronal and heliospheric X‐ray emission associated with the solar wind interaction with neutrals , 2001 .

[26]  T. Fuller‐Rowell,et al.  Global Simulation of Magnetospheric Space Weather Effects of the Bastille Day Storm , 2001 .

[27]  J. K. Chao,et al.  Models for the size and shape of the earth's magnetopause and bow shock , 2002 .

[28]  K. Dennerl Discovery of X-rays from Mars with Chandra , 2002, astro-ph/0211215.

[29]  J. Lean,et al.  Ionospheric and dayglow responses to the radiative phase of the Bastille Day flare , 2002 .

[30]  K. Dennerl,et al.  Discovery of X-rays from Venus with Chandra , 2002, astro-ph/0204263.

[31]  T. Zurbuchen,et al.  Kinetic properties of heavy solar wind ions from Ulysses-SWICS , 2002 .

[32]  S. Fuselier,et al.  Continuous magnetic reconnection at Earth's magnetopause , 2003, Nature.

[33]  D. Odstrcil Modeling 3-D solar wind structure , 2003 .

[34]  S. L. Snowden,et al.  XMM-Newton Observation of Solar Wind Charge Exchange Emission , 2004, astro-ph/0404354.

[35]  A. Ridley,et al.  Transpolar potential saturation models compared , 2004 .

[36]  M. Markevitch,et al.  CHANDRA OBSERVATIONS OF THE ''DARK'' MOON AND GEOCORONAL SOLAR WIND CHARGE TRANSFER , 2004, astro-ph/0402247.

[37]  Keisuke Hosokawa,et al.  Monitoring the high‐altitude cusp with the Low Energy Neutral Atom imager: Simultaneous observations from IMAGE and Polar , 2005 .

[38]  David R. Chesney,et al.  Space Weather Modeling Framework: A new tool for the space science community , 2005, Journal of Geophysical Research.

[39]  Joachim Raeder,et al.  Polar cap potential saturation during large geomagnetic storms , 2005 .

[40]  K. Papadopoulos,et al.  Global MHD simulations of the strongly driven magnetosphere: Modeling of the transpolar potential saturation , 2005 .

[41]  S. Boardsen,et al.  Low-energy neutral atom signatures of magnetopause motion in response to southward Bz , 2005 .

[42]  E. Quémerais,et al.  Charge-transfer induced EUV and soft X-ray emissions in the heliosphere , 2006 .

[43]  Harvard-Smithsonian Center for Astrophysics,et al.  Charge-Transfer induced EUV and Soft X-ray emissions in the Heliosphere , 2006 .

[44]  Ryuichi Fujimoto,et al.  Evidence for Solar-Wind Charge-Exchange X-Ray Emission from the Earth's Magnetosheath(Chapter 4. Warm and Hot IntraGalactic Medium, The Extreme Universe in the Suzaku Era) , 2006, astro-ph/0609308.

[45]  A. M. Read,et al.  Identifying XMM-Newton observations affected by solar wind charge exchange - Part II , 2008, 1101.1848.

[46]  S. Sembay,et al.  Identifying XMM-Newton observations affected by solar wind charge exchange. Part I , 2008, 0807.3624.

[47]  A. M. Read,et al.  A high charge state coronal mass ejection seen through solar wind charge exchange emission as detected by XMM–Newton , 2009, 0911.0897.

[48]  J. Carter,et al.  Identifying XMM‐Newton observations affected by Solar Wind Charge Exchange , 2009 .

[49]  C. H. Whitford,et al.  The mercury imaging X-ray spectrometer (MIXS) on BepiColombo , 2010 .

[50]  Ryuichi Fujimoto,et al.  Time Variability of the Geocoronal Solar-Wind Charge Exchange in the Direction of the Celestial Equator , 2010, 1006.5253.

[51]  Peter Wurz,et al.  Energetic neutral atoms from the Earth's subsolar magnetopause , 2010 .

[52]  E. Möbius,et al.  Neutral atom imaging of the magnetospheric cusps , 2011 .

[53]  M. Gruntman,et al.  Experimental study of exospheric hydrogen atom distributions by Lyman-alpha detectors on the TWINS mission , 2011 .

[54]  Dhiren Kataria,et al.  AXIOM: advanced X-ray imaging of the magnetosphere , 2011, 1107.0680.

[55]  Quentin F. Stout,et al.  Adaptive numerical algorithms in space weather modeling , 2012, J. Comput. Phys..

[56]  David G. Sibeck,et al.  Prototyping a global soft X-ray imaging instrument for heliophysics, planetary science, and astrophysics science , 2012 .

[57]  H. K. Hills,et al.  On lunar exospheric column densities and solar wind access beyond the terminator from ROSAT soft X‐ray observations of solar wind charge exchange , 2013 .

[58]  F. Porter,et al.  The origin of the local 1/4-keV X-ray flux in both charge exchange and a hot bubble , 2014, Nature.

[59]  M. Juda,et al.  OBSERVATION AND MODELING OF GEOCORONAL CHARGE EXCHANGE X-RAY EMISSION DURING SOLAR WIND GUSTS , 2014 .

[60]  T. Sun,et al.  X‐ray imaging of Kelvin‐Helmholtz waves at the magnetopause , 2015 .

[61]  F. Porter,et al.  Invited Article: First flight in space of a wide-field-of-view soft x-ray imager using lobster-eye optics: Instrument description and initial flight results. , 2015, The Review of scientific instruments.

[62]  F. Porter,et al.  THE SOLAR WIND CHARGE-EXCHANGE PRODUCTION FACTOR FOR HYDROGEN , 2015, 1503.04756.

[63]  D. Welling,et al.  Density variations in the Earth's magnetospheric cusps , 2016 .