The central kinematics of NGC 1399 measured with 14 pc resolution

We present near infra-red (NIR) adaptive optics assisted spectroscopic observations of the CO (�µ = 2) absorption bands towards the centre of the giant elliptical galaxy NGC 1399. The observations were made with NAOS-CONICA (ESO VLT) and have a FWHM resolution of 0. 15 (14pc). Kinematic analysis of the observations reveals a decoupled core and strongly non-Gaussian line-of-sight velocity profiles (VPs) in the central 0.2 arcsec (19pc). NIR imaging also indicates an asymmetric elongation of the central isophotes in the same region. We use spherical orbit-superposition models to interpret the kinematics, using a set of orthogonal “eigenVPs” that allow us to fit models directly to spectra. The models require a central black hole of mass 1.2 +0.5 −0.6 ×10 9 M⊙, with a strongly tangentially biased orbit distribution in the inner 40pc.

[1]  R. Bender,et al.  Regularized orbit models unveiling the stellar structure and dark matter halo of the Coma elliptical NGC 4807 , 2005, astro-ph/0504466.

[2]  Laura Ferrarese,et al.  Supermassive Black Holes in Galactic Nuclei: Past, Present and Future Research , 2004, astro-ph/0411247.

[3]  S. Tremaine,et al.  The Centers of Early-type Galaxies with Hst. v. New Wfpc2 Photometry , 2004 .

[4]  M. Bureau,et al.  The SAURON project - V. Integral-field emission-line kinematics of 48 elliptical and lenticular galaxies , 2005, astro-ph/0511307.

[5]  Hans-Walter Rix,et al.  On the Black Hole Mass-Bulge Mass Relation , 2004, astro-ph/0402376.

[6]  Eric Emsellem,et al.  Parametric Recovery of Line‐of‐Sight Velocity Distributions from Absorption‐Line Spectra of Galaxies via Penalized Likelihood , 2003, astro-ph/0312201.

[7]  E. Emsellem,et al.  Difficulties with Recovering the Masses of Supermassive Black Holes from Stellar Kinematical Data , 2002, astro-ph/0210379.

[8]  P. Martini,et al.  Coevolution of Black Holes and Galaxies , 2004 .

[9]  S. Tremaine,et al.  Kinematics of 10 Early-Type Galaxies from Hubble Space Telescope and Ground-based Spectroscopy , 2003, astro-ph/0306464.

[10]  A. Eckart,et al.  Stellar Dynamics in the Central Arcsecond of Our Galaxy , 2003, astro-ph/0306214.

[11]  A. Marconi,et al.  The Relation between Black Hole Mass, Bulge Mass, and Near-Infrared Luminosity , 2003, astro-ph/0304274.

[12]  S. Tremaine,et al.  Axisymmetric Dynamical Models of the Central Regions of Galaxies , 2002, astro-ph/0209483.

[13]  D. Richstone,et al.  The Cosmic Density of Massive Black Holes from Galaxy Velocity Dispersions , 2002, astro-ph/0210573.

[14]  S. Tremaine,et al.  The Slope of the Black Hole Mass versus Velocity Dispersion Correlation , 2002, astro-ph/0203468.

[15]  S. Tremaine,et al.  Observational constraints on growth of massive black holes , 2002, astro-ph/0203082.

[16]  M. Rees,et al.  Feeding black holes at galactic centres by capture from isothermal cusps , 2001, astro-ph/0112096.

[17]  Gerard A. Luppino,et al.  The SBF Survey of Galaxy Distances. IV. SBF Magnitudes, Colors, and Distances , 2000, astro-ph/0011223.

[18]  G. Kauffmann,et al.  The Correlation between black hole mass and bulge velocity dispersion in hierarchical galaxy formation models , 2000, astro-ph/0007369.

[19]  Ralf Bender,et al.  A Relationship between Nuclear Black Hole Mass and Galaxy Velocity Dispersion , 2000, astro-ph/0006289.

[20]  D. Merritt,et al.  A Fundamental Relation between Supermassive Black Holes and Their Host Galaxies , 2000, astro-ph/0006053.

[21]  D. Schlegel,et al.  Streaming motions of galaxy clusters within 12 000 km s−1 — I. New spectroscopic data , 2000 .

[22]  J. Mulchaey,et al.  The Properties of Poor Groups of Galaxies. III. The Galaxy Luminosity Function , 2000, astro-ph/0001495.

[23]  H. Kuntschner The Stellar Populations of Early-Type Galaxies in the Fornax Cluster , 2000, astro-ph/0001210.

[24]  R. Bender,et al.  The Orbital Structure and Potential of NGC 1399 , 1999, astro-ph/9909446.

[25]  P. T. de Zeeuw,et al.  Axisymmetric Three-Integral Models for Galaxies , 1999, astro-ph/9902034.

[26]  B. Gibson,et al.  The Hubble Space Telescope Key Project on the Extragalactic Distance Scale. XV. A Cepheid Distance to the Fornax Cluster and Its Implications , 1998, astro-ph/9812157.

[27]  Francois Rigaut,et al.  Design of the Nasmyth adaptive optics system (NAOS) of the VLT , 1998, Astronomical Telescopes and Instrumentation.

[28]  Peter Bizenberger,et al.  CONICA: the high-resolution near-infrared camera for the ESO VLT , 1998, Astronomical Telescopes and Instrumentation.

[29]  H. Dejonghe,et al.  Determination of the dynamical structure of galaxies using optical spectra. , 1998, astro-ph/9808218.

[30]  G. Longo,et al.  Extended stellar kinematics of elliptical galaxies in the Fornax cluster , 1998, astro-ph/9806331.

[31]  S. Tremaine,et al.  The Demography of Massive Dark Objects in Galaxy Centers , 1997, astro-ph/9708072.

[32]  P. T. de Zeeuw,et al.  Dynamical Modeling of Velocity Profiles: The Dark Halo around the Elliptical Galaxy NGC 2434 , 1997, astro-ph/9702126.

[33]  S. Tremaine,et al.  The centers of early-type galaxies with HST. IV. Central parameter relations , 1996, astro-ph/9610055.

[34]  S. Tremaine,et al.  Eccentric-Disk Models for the Nucleus of M31 , 1995, astro-ph/0307412.

[35]  Charles L. Lawson,et al.  Solving least squares problems , 1976, Classics in applied mathematics.

[36]  John Kormendy,et al.  Inward Bound—The Search for Supermassive Black Holes in Galactic Nuclei , 1995 .

[37]  Carl J. Grillmair,et al.  The Centers of Early-Type Galaxies with HST.I.An Observational Survey , 1995 .

[38]  V. Marel,et al.  Velocity profiles of galaxies with claimed black holes – III. Observations and models for M87 , 1994 .

[39]  H. Rix,et al.  Velocity profiles of galaxies with claimed black holes — I. Observations of M31, M32, NGC 3115 and NGC 4594 , 1994 .

[40]  P. Saha,et al.  Unfolding kinematics from galaxy spectra: A Bayesian method , 1994 .

[41]  R. J. Hanisch,et al.  Astronomical Data Analysis Software and Systems X , 2014 .

[42]  Ortwin Gerhard,et al.  Line-of-sight velocity profiles in spherical galaxies: breaking the degeneracy between anisotropy and mass , 1993 .

[43]  M. Franx,et al.  A new method for the identification of non-Gaussian line profiles in elliptical galaxies , 1993 .

[44]  G. A. Croes,et al.  FITS++: An Object-Oriented Set of C++ Classes to Support FITS , 1997 .

[45]  H. Rix,et al.  Optimal estimates of line-of-sight velocity distributions from absorption line spectra of galaxies: nuclear discs in elliptical galaxies , 1992 .

[46]  T. Heckman,et al.  Major and minor axis kinematics of 22 ellipticals , 1989 .

[47]  G. Bicknell,et al.  The stellar dynamics of NGC 1399 , 1989 .

[48]  G. Bicknell,et al.  The Mass Distribution of NGC 1399 from Optical and X-Ray Surface Photometry , 1988 .

[49]  D. Hall,et al.  Spectra of Late-Type Standard Stars in the Region 2.0--2.5 Microns , 1986 .

[50]  J. Schombert The structure of brightest cluster members. I: Surface photometry , 1986 .

[51]  Gary A. Mamon,et al.  M/L and velocity anisotropy from observations of spherical galaxies, or must M87 have a massive black hole? , 1982 .

[52]  S. Baird AC Herculis, a metal-poor, carbon-enhanced RV Tauri star , 1981 .

[53]  G. Efstathiou,et al.  Spectroscopic observations of three elliptical galaxies , 1980 .

[54]  K. Shortridge,et al.  Dynamical evidence for a central mass concentration in the galaxy M87. , 1978 .

[55]  W. Sargent,et al.  NEW DETERMINATION OF THE MASS OF M32. , 1972 .