Artificial Neural Networks Modeling of an active magnetic refrigeration cycle

The aim of this work is to use multi-layered perceptron artificial neural networks and multiple linear regressions models to predict the efficiency of the magnetic refrigeration cycle device operating near room temperature. For this purpose, the experimental data collection was used in order to predict coefficient of performance and temperature span for active magnetic refrigeration device. In addition, the operating parameters of active magnetic refrigerator cycle are used for solid magnetocaloric material under application 1.5 T magnetic fields. The obtained results including temperature span and coefficient of performance are presented and discussed.