A two junction, four terminal photovoltaic device for enhanced light to electric power conversion using a low-cost dichroic mirror
暂无分享,去创建一个
Sarah Kurtz | Ayelet Vilan | David Cahen | Akiba Segal | Igor Lubomirsky | Sven Rühle | Larissa Grinis | Arie Zaban | A. Segal | S. Kurtz | D. Cahen | A. Zaban | I. Lubomirsky | L. Grinis | A. Vilan | S. Rühle
[1] Kari Larsen. Load balancing: PSE installs wind with PV , 2008 .
[2] W. Warta,et al. Solar cell efficiency tables (version 33) , 2009 .
[3] Martin A. Green,et al. Third generation photovoltaics: Ultra‐high conversion efficiency at low cost , 2001 .
[4] A. Zaban,et al. Electrophoretic deposition and compression of titania nanoparticle films for dye-sensitized solar cells , 2008 .
[5] Martin A. Green,et al. Third generation photovoltaics: solar cells for 2020 and beyond , 2002 .
[6] Greg R. Schmidt,et al. Very high efficiency solar cell modules , 2009, Renewable Energy.
[7] Martin A. Green,et al. Detailed balance limit for the series constrained two terminal tandem solar cell , 2002 .
[8] D. Law,et al. 40% efficient metamorphic GaInP∕GaInAs∕Ge multijunction solar cells , 2007 .
[9] H. Queisser,et al. Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells , 1961 .
[10] Martin A. Green,et al. Solar Energy Conversion Toward 1 Terawatt , 2008 .
[11] P. Würfel,et al. Thermodynamic limitations to solar energy conversion , 2002 .
[12] Sarah R. Kurtz,et al. 29.5%‐efficient GaInP/GaAs tandem solar cells , 1994 .
[13] Daniel J. Friedman,et al. 40.8% efficient inverted triple-junction solar cell with two independently metamorphic junctions , 2008 .