Generalized Integral Siding Mode Manifold Design: A Sum of Squares Approach

This paper presents a general form of integral sliding mode manifold, and proposes an algorithmic approach based on Sum of Squares (SOS) programming to design generalized integral sliding mode manifold and controller for nonlinear systems with both matched and unmatched uncertainties. The approach also gives a sufficient condition for successful design of controller and manifold parameters. The result of the paper is then verified by several simulation examples and two practical applications, namely Glucose-insulin regulation problem and the unicycle dynamics steering problem are considered.

[1]  V. Utkin Variable structure systems with sliding modes , 1977 .

[2]  R. Bergman,et al.  Physiologic evaluation of factors controlling glucose tolerance in man: measurement of insulin sensitivity and beta-cell glucose sensitivity from the response to intravenous glucose. , 1981, The Journal of clinical investigation.

[3]  A. Isidori Nonlinear Control Systems , 1985 .

[4]  Antonio Bicchi,et al.  Closed loop steering of unicycle like vehicles via Lyapunov techniques , 1995, IEEE Robotics Autom. Mag..

[5]  V. Utkin,et al.  Integral sliding mode in systems operating under uncertainty conditions , 1996, Proceedings of 35th IEEE Conference on Decision and Control.

[6]  Christopher Edwards,et al.  Sliding mode control : theory and applications , 1998 .

[7]  Yun Huang,et al.  Nonlinear optimal control: an enhanced quasi-LPV approach , 1999 .

[8]  Alessandro De Luca,et al.  Stabilization of the Unicycle Via Dynamic Feedback Linearization , 2000 .

[9]  A. Rantzer A dual to Lyapunov's stability theorem , 2001 .

[10]  Peter J Seiler,et al.  SOSTOOLS: Sum of squares optimization toolbox for MATLAB , 2002 .

[11]  A. Papachristodoulou,et al.  On the construction of Lyapunov functions using the sum of squares decomposition , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[12]  Pablo A. Parrilo,et al.  Semidefinite programming relaxations for semialgebraic problems , 2003, Math. Program..

[13]  Z. Jarvis-Wloszek,et al.  Lyapunov Based Analysis and Controller Synthesis for Polynomial Systems using Sum-of-Squares Optimization , 2003 .

[14]  Wen-Jun Cao,et al.  Nonlinear integral-type sliding surface for both matched and unmatched uncertain systems , 2004, IEEE Trans. Autom. Control..

[15]  A. Papachristodoulou,et al.  Nonlinear control synthesis by sum of squares optimization: a Lyapunov-based approach , 2004, 2004 5th Asian Control Conference (IEEE Cat. No.04EX904).

[16]  Pablo A. Parrilo,et al.  Nonlinear control synthesis by convex optimization , 2004, IEEE Transactions on Automatic Control.

[17]  A. Papachristodoulou Scalable analysis of nonlinear systems using convex optimization , 2005 .

[18]  A. Garulli,et al.  Positive Polynomials in Control , 2005 .

[19]  Leonid M. Fridman,et al.  Analysis and design of integral sliding manifolds for systems with unmatched perturbations , 2006, IEEE Transactions on Automatic Control.

[20]  Xingyu Wang,et al.  Sliding mode control for Itô stochastic systems with Markovian switching , 2007, Autom..

[21]  Han Ho Choi,et al.  LMI-Based Sliding Surface Design for Integral Sliding Mode Control of Mismatched Uncertain Systems , 2007, IEEE Transactions on Automatic Control.

[22]  Yuri B. Shtessel,et al.  Blood glucose regulation using higher‐order sliding mode control , 2008 .

[23]  Andrew Packard,et al.  Stability Region Analysis Using Polynomial and Composite Polynomial Lyapunov Functions and Sum-of-Squares Programming , 2008, IEEE Transactions on Automatic Control.

[24]  Christopher Edwards,et al.  Sliding mode output feedback controller design using linear matrix inequalities with application to aircraft systems , 2008 .

[25]  Dan Zhao,et al.  An improved nonlinear H∞ synthesis for parameter-dependent polynomial nonlinear systems using SOS programming , 2009, 2009 American Control Conference.

[26]  Raktim Bhattacharya,et al.  Analysis of partial stability problems using sum of squares techniques , 2009, Autom..

[27]  Ying-Xu Yang,et al.  Finite-time stability and stabilization of nonlinear stochastic hybrid systems☆ , 2009 .

[28]  Daniel W. C. Ho,et al.  Sliding mode control of singular stochastic hybrid systems , 2010, Autom..

[29]  G. Chesi,et al.  LMI Techniques for Optimization Over Polynomials in Control: A Survey , 2010, IEEE Transactions on Automatic Control.

[30]  Antonella Ferrara,et al.  Integral Sliding Mode Control for Nonlinear Systems With Matched and Unmatched Perturbations , 2011, IEEE Transactions on Automatic Control.

[31]  Daniel W. C. Ho,et al.  Sliding mode control of switched hybrid systems with stochastic perturbation , 2011, Syst. Control. Lett..

[32]  G. Chesi Domain of Attraction: Analysis and Control via SOS Programming , 2011 .

[33]  A. Papachristodoulou,et al.  Generalised absolute stability and Sum of Squares , 2011 .

[34]  Leonid Fridman,et al.  Sliding Modes after the First Decade of the 21st Century : State of the Art , 2011 .

[35]  Christopher Edwards,et al.  Sliding Mode Control and Observation , 2013 .

[36]  Hong-Fei Sun,et al.  Robust control synthesis of polynomial nonlinear systems using sum of squares technique , 2013 .

[37]  Pablo A. Parrilo,et al.  SOSTOOLS Version 3.00 Sum of Squares Optimization Toolbox for MATLAB , 2013, ArXiv.