Solving regularly and singularly perturbed reaction-diffusion equations in three space dimensions

In P.K. Moore, Effects of basis selection and h-refinement on error estimator reliability and solution efficiency for higher-order methods in three space dimensions, Int. J. Numer. Anal. Mod. 3 (2006) 21-51] a fixed, high-order h-refinement finite element algorithm, Href, was introduced for solving reaction-diffusion equations in three space dimensions. In this paper Href is coupled with continuation creating an automatic method for solving regularly and singularly perturbed reaction-diffusion equations. The simple quasilinear Newton solver of Moore, (2006) is replaced by the nonlinear solver NITSOL M. Pernice, H.F. Walker, NITSOL: a Newton iterative solver for nonlinear systems, SIAM J. Sci. Comput. 19 (1998) 302-318]. Good initial guesses for the nonlinear solver are obtained using continuation in the small parameter ?. Two strategies allow adaptive selection of ?. The first depends on the rate of convergence of the nonlinear solver and the second implements backtracking in ?. Finally a simple method is used to select the initial ?. Several examples illustrate the effectiveness of the algorithm.

[1]  W. Rheinboldt,et al.  Error Estimates for Adaptive Finite Element Computations , 1978 .

[2]  B. Matkowsky,et al.  Reactive-Diffuse Systems with Arrhenius Kinetics: Multiple Solutions, Ignition and Extinction , 1979 .

[3]  J. Chandra,et al.  Adaptive Computational Methods for Partial Differential Equations , 1984 .

[4]  Natalia Kopteva,et al.  Grid equidistribution for reaction–diffusion problems in one dimension , 2005, Numerical Algorithms.

[5]  Zhimin Zhang,et al.  Finite element superconvergence on Shishkin mesh for 2-D convection-diffusion problems , 2003, Math. Comput..

[6]  Jirí Horák,et al.  Constrained mountain pass algorithm for the numerical solution of semilinear elliptic problems , 2004, Numerische Mathematik.

[7]  Tao Tang,et al.  Error analysis for a Galerkin-spectral method with coordinate transformation for solving singularly perturbed problems , 2001 .

[8]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[9]  Willy Govaerts,et al.  Numerical methods for bifurcations of dynamical equilibria , 1987 .

[10]  Peter K. Moore,et al.  Applications of Lobatto polynomials to an adaptive finite element method: A posteriori error estimates for HP-Adaptivity and Grid-to-Grid Interpolation , 2003, Numerische Mathematik.

[11]  Yousef Saad,et al.  ILUT: A dual threshold incomplete LU factorization , 1994, Numer. Linear Algebra Appl..

[12]  S. Orszag,et al.  Advanced Mathematical Methods For Scientists And Engineers , 1979 .

[13]  Homer F. Walker,et al.  NITSOL: A Newton Iterative Solver for Nonlinear Systems , 1998, SIAM J. Sci. Comput..

[14]  Niall Madden,et al.  A uniformly convergent numerical method for a coupled system of two singularly perturbed linear reaction–diffusion problems , 2003 .

[15]  Ionel M. Navon,et al.  Mesh refinement strategies for solving singularly perturbed reaction-diffusion problems☆☆☆ , 2001 .

[16]  Jens Markus Melenk,et al.  hp FEM for Reaction-Diffusion Equations I: Robust Exponential Convergence , 1998 .

[17]  Torsten Linß,et al.  Uniform Pointwise Convergence on Shishkin-Type Meshes for Quasi-Linear Convection-Diffusion Problems , 2000, SIAM J. Numer. Anal..

[18]  P. Moore Implicit interpolation error-based error estimation for reaction-diffusion equations in two space dimensions , 2003 .

[19]  T. Apel,et al.  Anisotropic mesh refinement for a singularly perturbed reaction diffusion model problem , 1998 .

[20]  Randolph E. Bank,et al.  PLTMG - a software package for solving elliptic partial differential equations: users' guide 8.0 , 1998, Software, environments, tools.

[21]  Jeff Cash,et al.  An automatic continuation strategy for the solution of singularly perturbed linear two-point boundary value problems , 1995 .

[22]  Gerald Moore,et al.  An automatic continuation strategy for the solution of singularly perturbed nonlinear boundary value problems , 2001, TOMS.

[23]  P. Moore Finite Difference Methods and Spatial A Posteriori Error Estimates for Solving Parabolic Equations in Three Space Dimensions on Grids with Irregular Nodes , 1999 .

[24]  Robert D. Russell,et al.  Numerical solution of boundary value problems for ordinary differential equations , 1995, Classics in applied mathematics.

[25]  Natalia Kopteva,et al.  Numerical analysis of a singularly perturbed nonlinear reaction-diffusion problem with multiple solutions , 2004 .

[26]  P. Moore EFFECTS OF BASIS SELECTION AND H-REFINEMENT ON ERROR ESTIMATOR RELIABILITY AND SOLUTION EFFICIENCY FOR HIGH-ORDER METHODS IN THREE SPACE DIMENSIONS , 2006 .

[27]  R. Seydel TUTORIAL ON CONTINUATION , 1991 .

[28]  Y. Choi,et al.  A mountain pass method for the numerical solution of semilinear elliptic problems , 1993 .

[29]  Alan Weiser,et al.  Local-mesh, local-order, adaptive finite element methods with a-posteriori error estimators for elliptic partial differential equations , 1981 .

[30]  Joseph E. Flaherty,et al.  Integrated space-time adaptive hp -refinement methods for parabolic systems , 1995 .

[31]  J. Hopcroft,et al.  Modeling, mesh generation, and adaptive numerical methods for partial differential equations , 1995 .

[32]  Tao Tang,et al.  Boundary Layer Resolving Pseudospectral Methods for Singular Perturbation Problems , 1996, SIAM J. Sci. Comput..

[33]  Robert D. Russell,et al.  A Study of Monitor Functions for Two-Dimensional Adaptive Mesh Generation , 1999, SIAM J. Sci. Comput..

[34]  I. Babuska,et al.  Finite Element Analysis , 2021 .

[35]  Homer F. Walker,et al.  Globally Convergent Inexact Newton Methods , 1994, SIAM J. Optim..

[36]  Gerd Kunert,et al.  Numerische Simulation Auf Massiv Parallelen Rechnern Error Estimation for a Singularly Perturbed Reaction Diffusion Problem on Anisotropic Meshes , 2022 .

[37]  Martin Stynes,et al.  An almost fourth order uniformly convergent difference scheme for a semilinear singularly perturbed reaction-diffusion problem , 1995 .

[38]  P. Moore An incomplete assembly with thresholding algorithm for systems of reaction-diffusion equations in three space dimensions IAT for reaction-diffusion systems , 2003 .

[39]  D. J. Collington Energy methods in finite element analysis: Edited by R. Glowinski, E. Y. Rodin and O. C. Zienkiewicz Wiley-Interscience, New York, £17.50 , 1980 .

[40]  I. M. Navon,et al.  Uniformly convergent finite element methods for singularly perturbed elliptic boundary value problems I: Reaction-diffusion Type , 1998, Computers & Mathematics with Applications.

[41]  Peter K. Moore,et al.  An Adaptive Finite Element Method for Parabolic Differential Systems: Some Algorithmic Considerations in Solving in Three Space Dimensions , 1999, SIAM J. Sci. Comput..