Solving regularly and singularly perturbed reaction-diffusion equations in three space dimensions
暂无分享,去创建一个
[1] W. Rheinboldt,et al. Error Estimates for Adaptive Finite Element Computations , 1978 .
[2] B. Matkowsky,et al. Reactive-Diffuse Systems with Arrhenius Kinetics: Multiple Solutions, Ignition and Extinction , 1979 .
[3] J. Chandra,et al. Adaptive Computational Methods for Partial Differential Equations , 1984 .
[4] Natalia Kopteva,et al. Grid equidistribution for reaction–diffusion problems in one dimension , 2005, Numerical Algorithms.
[5] Zhimin Zhang,et al. Finite element superconvergence on Shishkin mesh for 2-D convection-diffusion problems , 2003, Math. Comput..
[6] Jirí Horák,et al. Constrained mountain pass algorithm for the numerical solution of semilinear elliptic problems , 2004, Numerische Mathematik.
[7] Tao Tang,et al. Error analysis for a Galerkin-spectral method with coordinate transformation for solving singularly perturbed problems , 2001 .
[8] Y. Saad,et al. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .
[9] Willy Govaerts,et al. Numerical methods for bifurcations of dynamical equilibria , 1987 .
[10] Peter K. Moore,et al. Applications of Lobatto polynomials to an adaptive finite element method: A posteriori error estimates for HP-Adaptivity and Grid-to-Grid Interpolation , 2003, Numerische Mathematik.
[11] Yousef Saad,et al. ILUT: A dual threshold incomplete LU factorization , 1994, Numer. Linear Algebra Appl..
[12] S. Orszag,et al. Advanced Mathematical Methods For Scientists And Engineers , 1979 .
[13] Homer F. Walker,et al. NITSOL: A Newton Iterative Solver for Nonlinear Systems , 1998, SIAM J. Sci. Comput..
[14] Niall Madden,et al. A uniformly convergent numerical method for a coupled system of two singularly perturbed linear reaction–diffusion problems , 2003 .
[15] Ionel M. Navon,et al. Mesh refinement strategies for solving singularly perturbed reaction-diffusion problems☆☆☆ , 2001 .
[16] Jens Markus Melenk,et al. hp FEM for Reaction-Diffusion Equations I: Robust Exponential Convergence , 1998 .
[17] Torsten Linß,et al. Uniform Pointwise Convergence on Shishkin-Type Meshes for Quasi-Linear Convection-Diffusion Problems , 2000, SIAM J. Numer. Anal..
[18] P. Moore. Implicit interpolation error-based error estimation for reaction-diffusion equations in two space dimensions , 2003 .
[19] T. Apel,et al. Anisotropic mesh refinement for a singularly perturbed reaction diffusion model problem , 1998 .
[20] Randolph E. Bank,et al. PLTMG - a software package for solving elliptic partial differential equations: users' guide 8.0 , 1998, Software, environments, tools.
[21] Jeff Cash,et al. An automatic continuation strategy for the solution of singularly perturbed linear two-point boundary value problems , 1995 .
[22] Gerald Moore,et al. An automatic continuation strategy for the solution of singularly perturbed nonlinear boundary value problems , 2001, TOMS.
[23] P. Moore. Finite Difference Methods and Spatial A Posteriori Error Estimates for Solving Parabolic Equations in Three Space Dimensions on Grids with Irregular Nodes , 1999 .
[24] Robert D. Russell,et al. Numerical solution of boundary value problems for ordinary differential equations , 1995, Classics in applied mathematics.
[25] Natalia Kopteva,et al. Numerical analysis of a singularly perturbed nonlinear reaction-diffusion problem with multiple solutions , 2004 .
[26] P. Moore. EFFECTS OF BASIS SELECTION AND H-REFINEMENT ON ERROR ESTIMATOR RELIABILITY AND SOLUTION EFFICIENCY FOR HIGH-ORDER METHODS IN THREE SPACE DIMENSIONS , 2006 .
[27] R. Seydel. TUTORIAL ON CONTINUATION , 1991 .
[28] Y. Choi,et al. A mountain pass method for the numerical solution of semilinear elliptic problems , 1993 .
[29] Alan Weiser,et al. Local-mesh, local-order, adaptive finite element methods with a-posteriori error estimators for elliptic partial differential equations , 1981 .
[30] Joseph E. Flaherty,et al. Integrated space-time adaptive hp -refinement methods for parabolic systems , 1995 .
[31] J. Hopcroft,et al. Modeling, mesh generation, and adaptive numerical methods for partial differential equations , 1995 .
[32] Tao Tang,et al. Boundary Layer Resolving Pseudospectral Methods for Singular Perturbation Problems , 1996, SIAM J. Sci. Comput..
[33] Robert D. Russell,et al. A Study of Monitor Functions for Two-Dimensional Adaptive Mesh Generation , 1999, SIAM J. Sci. Comput..
[34] I. Babuska,et al. Finite Element Analysis , 2021 .
[35] Homer F. Walker,et al. Globally Convergent Inexact Newton Methods , 1994, SIAM J. Optim..
[36] Gerd Kunert,et al. Numerische Simulation Auf Massiv Parallelen Rechnern Error Estimation for a Singularly Perturbed Reaction Diffusion Problem on Anisotropic Meshes , 2022 .
[37] Martin Stynes,et al. An almost fourth order uniformly convergent difference scheme for a semilinear singularly perturbed reaction-diffusion problem , 1995 .
[38] P. Moore. An incomplete assembly with thresholding algorithm for systems of reaction-diffusion equations in three space dimensions IAT for reaction-diffusion systems , 2003 .
[39] D. J. Collington. Energy methods in finite element analysis: Edited by R. Glowinski, E. Y. Rodin and O. C. Zienkiewicz Wiley-Interscience, New York, £17.50 , 1980 .
[40] I. M. Navon,et al. Uniformly convergent finite element methods for singularly perturbed elliptic boundary value problems I: Reaction-diffusion Type , 1998, Computers & Mathematics with Applications.
[41] Peter K. Moore,et al. An Adaptive Finite Element Method for Parabolic Differential Systems: Some Algorithmic Considerations in Solving in Three Space Dimensions , 1999, SIAM J. Sci. Comput..