Basic Understanding of Condensed Phases of Matter via Packing Models

Packing problems have been a source of fascination for millennia and their study has produced a rich literature that spans numerous disciplines. Investigations of hard-particle packing models have provided basic insights into the structure and bulk properties of condensed phases of matter, including low-temperature states (e.g., molecular and colloidal liquids, crystals, and glasses), multiphase heterogeneous media, granular media, and biological systems. The densest packings are of great interest in pure mathematics, including discrete geometry and number theory. This perspective reviews pertinent theoretical and computational literature concerning the equilibrium, metastable, and nonequilibrium packings of hard-particle packings in various Euclidean space dimensions. In the case of jammed packings, emphasis will be placed on the "geometric-structure" approach, which provides a powerful and unified means to quantitatively characterize individual packings via jamming categories and "order" maps. It incorporates extremal jammed states, including the densest packings, maximally random jammed states, and lowest-density jammed structures. Packings of identical spheres, spheres with a size distribution, and nonspherical particles are also surveyed. We close this review by identifying challenges and open questions for future research.

[1]  G. Zhang Precise algorithm to generate random sequential adsorption of hard polygons at saturation. , 2018, Physical review. E.

[2]  F. Stillinger,et al.  Rational design of stealthy hyperuniform two-phase media with tunable order. , 2018, Physical review. E.

[3]  S. Torquato Hyperuniform states of matter , 2018, Physics Reports.

[4]  M. Cieśla,et al.  Random sequential adsorption of cubes. , 2018, The Journal of chemical physics.

[5]  C. O’Hern,et al.  Hypostatic jammed packings of frictionless nonspherical particles. , 2017, Physical review. E.

[6]  Rémi Carminati,et al.  Optimizing Hyperuniformity in Self-Assembled Bidisperse Emulsions. , 2017, Physical review letters.

[7]  S. Torquato,et al.  Disordered hyperuniformity in two-component nonadditive hard-disk plasmas. , 2017, Physical review. E.

[8]  S. Torquato,et al.  Disordered multihyperuniformity derived from binary plasmas. , 2017, Physical review. E.

[9]  S. Torquato,et al.  Characterization of maximally random jammed sphere packings. III. Transport and electromagnetic properties via correlation functions. , 2017, Physical review. E.

[10]  Andrés Santos,et al.  Equation of state of polydisperse hard-disk mixtures in the high-density regime. , 2017, Physical review. E.

[11]  G. Parisi,et al.  Large-scale structure of randomly jammed spheres. , 2017, Physical Review E.

[12]  Joshua E. S. Socolar,et al.  Hyperuniformity of quasicrystals , 2016, 1612.01975.

[13]  S. Torquato,et al.  Structural Characterization and Statistical-Mechanical Model of Epidermal Patterns. , 2016, Biophysical journal.

[14]  F. Stillinger,et al.  Transport, geometrical, and topological properties of stealthy disordered hyperuniform two-phase systems. , 2016, The Journal of chemical physics.

[15]  Salvatore Torquato,et al.  Percolation of disordered jammed sphere packings , 2016, 1611.00279.

[16]  F. Stillinger,et al.  The Perfect Glass Paradigm: Disordered Hyperuniform Glasses Down to Absolute Zero , 2016, Scientific Reports.

[17]  F. Stillinger,et al.  Static structural signatures of nearly jammed disordered and ordered hard-sphere packings: Direct correlation function. , 2016, Physical review. E.

[18]  S. Torquato Disordered hyperuniform heterogeneous materials , 2016, Journal of physics. Condensed matter : an Institute of Physics journal.

[19]  S. Torquato,et al.  Characterization of maximally random jammed sphere packings. II. Correlation functions and density fluctuations. , 2016, Physical review. E.

[20]  Salvatore Torquato,et al.  Critical slowing down and hyperuniformity on approach to jamming. , 2016, Physical review. E.

[21]  Henry Cohn,et al.  The sphere packing problem in dimension 8The sphere packing problem in dimension 8 , 2016, 1603.04246.

[22]  M. Viazovska The sphere packing problem in dimension 8The sphere packing problem in dimension 8 , 2016, 1603.04246.

[23]  S. Torquato,et al.  Confined disordered strictly jammed binary sphere packings. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[24]  S. Torquato,et al.  Hard convex lens-shaped particles: Densest-known packings and phase behavior. , 2015, The Journal of chemical physics.

[25]  Salvatore Torquato,et al.  A Geometric-Structure Theory for Maximally Random Jammed Packings , 2015, Scientific Reports.

[26]  Cristobal Guzman,et al.  New Upper Bounds for the Density of Translative Packings of Three-Dimensional Convex Bodies with Tetrahedral Symmetry , 2015, Discret. Comput. Geom..

[27]  Yegang Wu,et al.  Search for hyperuniformity in mechanically stable packings of frictionless disks above jamming. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[28]  L. Berthier,et al.  Thermal fluctuations, mechanical response, and hyperuniformity in jammed solids. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[29]  F. H. Stillinger,et al.  Ensemble Theory for Stealthy Hyperuniform Disordered Ground States , 2015, 1503.06436.

[30]  H. Jaeger Celebrating Soft Matter's 10th Anniversary: toward jamming by design. , 2015, Soft matter.

[31]  Salvatore Torquato,et al.  Existence of isostatic, maximally random jammed monodisperse hard-disk packings , 2014, Proceedings of the National Academy of Sciences.

[32]  M. Dijkstra Entropy‐Driven Phase Transitions in Colloids: From spheres to anisotropic particles , 2014 .

[33]  S. Torquato,et al.  Characterization of maximally random jammed sphere packings: Voronoi correlation functions. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[34]  S. Torquato,et al.  Viscosity of bimodal suspensions with hard spherical particles , 2014 .

[35]  S. Torquato,et al.  Diagnosing hyperuniformity in two-dimensional, disordered, jammed packings of soft spheres. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[36]  Y. Martínez-Ratón,et al.  Hard-body models of bulk liquid crystals , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[37]  M. Cieśla,et al.  Random packing of regular polygons and star polygons on a flat two-dimensional surface. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[38]  S. Torquato,et al.  Impact of microstructure on the effective diffusivity in random packings of hard spheres , 2014 .

[39]  S. Torquato,et al.  Equilibrium phase behavior and maximally random jammed state of truncated tetrahedra. , 2014, The journal of physical chemistry. B.

[40]  S. Torquato,et al.  Marginal stability in jammed packings: quasicontacts and weak contacts. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[41]  S. Torquato,et al.  Dense periodic packings of tori. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[42]  Michael Meyer-Hermann,et al.  Avian photoreceptor patterns represent a disordered hyperuniform solution to a multiscale packing problem. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[43]  F. Stillinger,et al.  Detailed characterization of rattlers in exactly isostatic, strictly jammed sphere packings. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[44]  S. Torquato,et al.  Precise algorithm to generate random sequential addition of hard hyperspheres at saturation. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[45]  S. Torquato,et al.  Jammed lattice sphere packings. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[46]  F. Scheffold,et al.  Direct laser writing of three-dimensional network structures as templates for disordered photonic materials , 2013, 1309.5881.

[47]  Elizabeth R. Chen,et al.  Complexity in surfaces of densest packings for families of polyhedra , 2013, 1309.2662.

[48]  S. Torquato,et al.  Extreme lattices: symmetries and decorrelation , 2013, 1309.1301.

[49]  Salvatore Torquato,et al.  Disordered strictly jammed binary sphere packings attain an anomalously large range of densities. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[50]  Ryan Jadrich,et al.  Equilibrium theory of the hard sphere fluid and glasses in the metastable regime up to jamming. I. Thermodynamics. , 2013, The Journal of chemical physics.

[51]  M. Dijkstra,et al.  Phase diagram and structural diversity of a family of truncated cubes: degenerate close-packed structures and vacancy-rich states. , 2013, Physical review letters.

[52]  S. Torquato,et al.  Efficient linear programming algorithm to generate the densest lattice sphere packings. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[53]  G. Odriozola,et al.  Further details on the phase diagram of hard ellipsoids of revolution. , 2013, The Journal of chemical physics.

[54]  M. Dijkstra,et al.  Crystal-structure prediction via the floppy-box Monte Carlo algorithm: method and application to hard (non)convex particles. , 2012, The Journal of chemical physics.

[55]  S. Torquato,et al.  Families of tessellations of space by elementary polyhedra via retessellations of face-centered-cubic and related tilings. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[56]  F. Stillinger,et al.  Nonequilibrium static growing length scales in supercooled liquids on approaching the glass transition. , 2012, The Journal of chemical physics.

[57]  S. Torquato,et al.  Maximally dense packings of two-dimensional convex and concave noncircular particles. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[58]  Giorgio Parisi,et al.  Universal microstructure and mechanical stability of jammed packings. , 2012, Physical review letters.

[59]  C. Zong On the translative packing densities of tetrahedra and cubooctahedra , 2012, 1208.0420.

[60]  P. Damasceno,et al.  Predictive Self-Assembly of Polyhedra into Complex Structures , 2012, Science.

[61]  S. Torquato,et al.  Organizing principles for dense packings of nonspherical hard particles: not all shapes are created equal. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[62]  F. Stillinger,et al.  Nonequilibrium static diverging length scales on approaching a prototypical model glassy state. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[63]  A. Scardicchio,et al.  Random perfect lattices and the sphere packing problem. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[64]  S. Torquato,et al.  Effect of dimensionality on the continuum percolation of overlapping hyperspheres and hypercubes. , 2012, The Journal of chemical physics.

[65]  P. Geissler,et al.  Self-assembly of uniform polyhedral silver nanocrystals into densest packings and exotic superlattices. , 2012, Nature materials.

[66]  Salvatore Torquato,et al.  Densest binary sphere packings. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[67]  Marjolein Dijkstra,et al.  Phase diagram of colloidal hard superballs: from cubes via spheres to octahedra , 2011, 1111.4357.

[68]  M. Dijkstra,et al.  Vacancy-stabilized crystalline order in hard cubes , 2011, Proceedings of the National Academy of Sciences.

[69]  Salvatore Torquato,et al.  Maximally random jammed packings of Platonic solids: hyperuniform long-range correlations and isostaticity. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[70]  S. Torquato,et al.  Communication: a packing of truncated tetrahedra that nearly fills all of space and its melting properties. , 2011, The Journal of chemical physics.

[71]  P. Damasceno,et al.  Crystalline assemblies and densest packings of a family of truncated tetrahedra and the role of directional entropic forces. , 2011, ACS nano.

[72]  Chase E. Zachary,et al.  High-dimensional generalizations of the kagomé and diamond crystals and the decorrelation principle for periodic sphere packings , 2011, 1108.3792.

[73]  F. Stillinger,et al.  Phase diagram and structural diversity of the densest binary sphere packings. , 2011, Physical review letters.

[74]  M. Dijkstra,et al.  Dense regular packings of irregular nonconvex particles. , 2011, Physical review letters.

[75]  Chase E. Zachary,et al.  Hyperuniformity, quasi-long-range correlations, and void-space constraints in maximally random jammed particle packings. I. Polydisperse spheres. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[76]  Chase E. Zachary,et al.  Hyperuniformity, quasi-long-range correlations, and void-space constraints in maximally random jammed particle packings. II. Anisotropy in particle shape. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[77]  Fernando A Escobedo,et al.  Mesophase behaviour of polyhedral particles. , 2011, Nature materials.

[78]  A. Cuetos,et al.  Phase behavior of hard colloidal platelets using free energy calculations. , 2011, The Journal of chemical physics.

[79]  S. Torquato,et al.  Rigidity of Spherical Codes , 2011, 1102.5060.

[80]  Werner Krauth,et al.  Two-step melting in two dimensions: first-order liquid-hexatic transition. , 2011, Physical review letters.

[81]  F. Stillinger,et al.  Nonuniversality of density and disorder in jammed sphere packings , 2011, 1101.1327.

[82]  J. Martinet Perfect Lattices in Euclidean Spaces , 2010 .

[83]  F. Stillinger,et al.  Densest local sphere-packing diversity. II. Application to three dimensions. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[84]  S Torquato,et al.  Reformulation of the covering and quantizer problems as ground states of interacting particles. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[85]  F. Zamponi,et al.  Application of Edwards' statistical mechanics to high-dimensional jammed sphere packings. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[86]  Veit Elser,et al.  Upper Bound on the Packing Density of Regular Tetrahedra and Octahedra , 2010, Discret. Comput. Geom..

[87]  Ludovic Berthier,et al.  Suppressed compressibility at large scale in jammed packings of size-disperse spheres. , 2010, Physical review letters.

[88]  F. Stillinger,et al.  Jammed hard-particle packings: From Kepler to Bernal and beyond , 2010, 1008.2982.

[89]  S Torquato,et al.  Robust algorithm to generate a diverse class of dense disordered and ordered sphere packings via linear programming. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[90]  Salvatore Torquato,et al.  Hyperuniform long-range correlations are a signature of disordered jammed hard-particle packings. , 2010, Physical review letters.

[91]  A. Bezdek,et al.  Dense Packing of Space with Various Convex Solids , 2010, 1008.2398.

[92]  Salvatore Torquato,et al.  Optimal Design of Heterogeneous Materials , 2010 .

[93]  Salvatore Torquato,et al.  Phase behavior of colloidal superballs: shape interpolation from spheres to cubes. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[94]  Alexander Jaoshvili,et al.  Experiments on the random packing of tetrahedral dice. , 2010, Physical review letters.

[95]  S Torquato,et al.  Exact constructions of a family of dense periodic packings of tetrahedra. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[96]  F. Stillinger,et al.  Spherical codes, maximal local packing density, and the golden ratio , 2010, 1003.3604.

[97]  P. Whitlock,et al.  The fluid to solid phase transition of hard hyperspheres in four and five dimensions. , 2010, The Journal of chemical physics.

[98]  Roland Roth,et al.  Fundamental measure theory for hard-sphere mixtures: a review , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[99]  V. Crespi,et al.  Annealing a magnetic cactus into phyllotaxis. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[100]  F. Stillinger,et al.  Densest local sphere-packing diversity: general concepts and application to two dimensions. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[101]  Michael Engel,et al.  Dense Crystalline Dimer Packings of Regular Tetrahedra , 2010, Discret. Comput. Geom..

[102]  F. Stillinger,et al.  Distinctive features arising in maximally random jammed packings of superballs. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[103]  Aaron S. Keys,et al.  Disordered, quasicrystalline and crystalline phases of densely packed tetrahedra , 2009, Nature.

[104]  Veit Elser,et al.  Dense Periodic Packings of Tetrahedra with Small Repeating Units , 2009, Discret. Comput. Geom..

[105]  S. Gravel,et al.  A dense periodic packing of tetrahedra with a small repeating unit , 2009 .

[106]  Chase E. Zachary,et al.  Hyperuniformity in point patterns and two-phase random heterogeneous media , 2009, 0910.2172.

[107]  Srikanth Sastry,et al.  Jamming transitions in amorphous packings of frictionless spheres occur over a continuous range of volume fractions. , 2009, Physical review letters.

[108]  S Torquato,et al.  Dense packings of polyhedra: Platonic and Archimedean solids. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[109]  S. Torquato,et al.  Dense packings of the Platonic and Archimedean solids , 2009, Nature.

[110]  M. Dijkstra,et al.  Stability of LS and LS2 crystal structures in binary mixtures of hard and charged spheres. , 2009, The Journal of chemical physics.

[111]  C. Cazorla,et al.  High-pressure phases, vibrational properties, and electronic structure of Ne ( He ) 2 and Ar ( He ) 2 : A first-principles study , 2009 .

[112]  M. Clusel,et al.  A ‘granocentric’ model for random packing of jammed emulsions , 2009, Nature.

[113]  P. Charbonneau,et al.  Hard-sphere crystallization gets rarer with increasing dimension. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[114]  Laura Filion,et al.  Prediction of binary hard-sphere crystal structures. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[115]  Ludovic Berthier,et al.  Glass transition of dense fluids of hard and compressible spheres. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[116]  V. Privman,et al.  Random sequential adsorption of oriented superdisks. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[117]  F. Stillinger,et al.  Optimal packings of superballs. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[118]  Salvatore Torquato,et al.  Inverse optimization techniques for targeted self-assembly , 2008, 0811.0040.

[119]  Elizabeth R. Chen,et al.  A Dense Packing of Regular Tetrahedra , 2008, Discret. Comput. Geom..

[120]  D. Frenkel,et al.  Geometrical frustration: a study of four-dimensional hard spheres. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[121]  Chase E. Zachary,et al.  Point processes in arbitrary dimension from fermionic gases, random matrix theory, and number theory , 2008, 0809.0449.

[122]  Jonathan K. Kummerfeld,et al.  The densest packing of AB binary hard-sphere homogeneous compounds across all size ratios. , 2008, The journal of physical chemistry. B.

[123]  Salvatore Torquato,et al.  A Novel Three-Phase Model of Brain Tissue Microstructure , 2008, PLoS Comput. Biol..

[124]  E. Katzav,et al.  Solution of the Percus-Yevick equation for hard hyperspheres in even dimensions. , 2008, The Journal of chemical physics.

[125]  F. Stillinger,et al.  Erratum: “Toward the jamming threshold of sphere packings: Tunneled crystals” [J. Appl. Phys. 102, 093511 (2007)] , 2008 .

[126]  P. Harrowell,et al.  Dense packings of hard spheres of different sizes based on filling interstices in uniform three-dimensional tilings. , 2008, Journal of Physical Chemistry B.

[127]  H. Makse,et al.  A phase diagram for jammed matter , 2008, Nature.

[128]  R. Kamien,et al.  Hard Discs on the Hyperbolic Plane , 2008 .

[129]  Giorgio Parisi,et al.  Mean-field theory of hard sphere glasses and jamming , 2008, 0802.2180.

[130]  S. Sondhi,et al.  Classical Antiferromagnetism on Torquato-Stillinger Packings , 2008, 0802.1962.

[131]  S Torquato,et al.  Optimal packings of superdisks and the role of symmetry. , 2007, Physical review letters.

[132]  F. Stillinger,et al.  Configurational entropy of binary hard-disk glasses: nonexistence of an ideal glass transition. , 2007, The Journal of chemical physics.

[133]  Salvatore Torquato,et al.  Effective dielectric tensor for electromagnetic wave propagation in random media , 2007, 0709.1924.

[134]  R. Kamien,et al.  Hard disks on the hyperbolic plane. , 2007, Physical review letters.

[135]  Andrés Santos,et al.  Structure of hard-hypersphere fluids in odd dimensions. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[136]  F. Stillinger,et al.  Toward the jamming threshold of sphere packings: Tunneled crystals , 2007, 0707.4263.

[137]  F. Stillinger,et al.  Estimates of the optimal density of sphere packings in high dimensions , 2007, 0705.1482.

[138]  Alfons van Blaaderen,et al.  Self-assembly route for photonic crystals with a bandgap in the visible region. , 2007, Nature materials.

[139]  Andrea J. Liu,et al.  Why is random close packing reproducible? , 2007, Physical review letters.

[140]  T. Schilling,et al.  Simple monoclinic crystal phase in suspensions of hard ellipsoids. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[141]  F. Stillinger,et al.  Random sequential addition of hard spheres in high Euclidean dimensions. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[142]  Monica L. Skoge,et al.  Packing hyperspheres in high-dimensional Euclidean spaces. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[143]  Aleksandar Donev,et al.  Underconstrained jammed packings of nonspherical hard particles: ellipses and ellipsoids. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[144]  T. Zohdi On the optical thickness of disordered particulate media , 2006 .

[145]  Henry Cohn,et al.  Universally optimal distribution of points on spheres , 2006, math/0607446.

[146]  S Torquato,et al.  Packing, tiling, and covering with tetrahedra. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[147]  T. Aste,et al.  Local and global relations between the number of contacts and density in monodisperse sphere packs , 2006, 0709.3141.

[148]  S. Torquato Necessary Conditions on Realizable Two-Point Correlation Functions of Random Media† , 2006, cond-mat/0606577.

[149]  C. O’Hern,et al.  Frequency distribution of mechanically stable disk packings. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[150]  S. Leoni,et al.  High-pressure crystal chemistry of binary intermetallic compounds , 2006 .

[151]  F. Stillinger,et al.  Exactly solvable disordered sphere-packing model in arbitrary-dimensional Euclidean spaces. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[152]  F. Stillinger,et al.  Do binary hard disks exhibit an ideal glass transition? , 2006, Physical review letters.

[153]  Giorgio Parisi,et al.  Amorphous packings of hard spheres for large space dimension , 2006, ArXiv.

[154]  A. Schuermann,et al.  A generalization of Voronoi's reduction theory and its application , 2006, math/0601084.

[155]  A. Philipse,et al.  Simulation of random packing of binary sphere mixtures by mechanical contraction , 2005 .

[156]  Fernando A Escobedo,et al.  Phase behavior of colloidal hard tetragonal parallelepipeds (cuboids): a Monte Carlo simulation study. , 2005, The journal of physical chemistry. B.

[157]  T. Hales The Kepler conjecture , 1998, math/9811078.

[158]  G. Parisi,et al.  The ideal glass transition of hard spheres. , 2005, The Journal of chemical physics.

[159]  David R. Nelson,et al.  Crystalline Particle Packings on a Sphere with Long Range Power Law Potentials , 2005, cond-mat/0509777.

[160]  F. Stillinger,et al.  New Conjectural Lower Bounds on the Optimal Density of Sphere Packings , 2005, Exp. Math..

[161]  M. Wyart,et al.  Effects of compression on the vibrational modes of marginally jammed solids. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[162]  F. Stillinger,et al.  Unexpected density fluctuations in jammed disordered sphere packings. , 2005, Physical review letters.

[163]  Aleksandar Donev,et al.  Experiments on random packings of ellipsoids. , 2005, Physical review letters.

[164]  B. McCoy,et al.  Ninth and Tenth Order Virial Coefficients for Hard Spheres in D Dimensions , 2005, cond-mat/0503525.

[165]  R. Zallen,et al.  The Physics of Amorphous Solids: ZALLEN:PHYSICS OF AMORPHO O-BK , 2005 .

[166]  Andrea J. Liu,et al.  Vibrations and diverging length scales near the unjamming transition. , 2005, Physical review letters.

[167]  Aleksandar Donev,et al.  Neighbor list collision-driven molecular dynamics simulation for nonspherical hard particles. , 2005 .

[168]  Tarek I. Zohdi,et al.  A computational framework for agglomeration in thermochemically reacting granular flows , 2004, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[169]  W. Gelbart,et al.  Origin of icosahedral symmetry in viruses. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[170]  F. Stillinger,et al.  Concerning maximal packing arrangements of binary disk mixtures , 2004 .

[171]  J. Renes Equiangular spherical codes in quantum cryptography , 2004, Quantum Inf. Comput..

[172]  F. Stillinger,et al.  Pair correlation function characteristics of nearly jammed disordered and ordered hard-sphere packings. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[173]  Henry Cohn,et al.  Optimality and uniqueness of the Leech lattice among lattices , 2004, math/0403263.

[174]  F. Stillinger,et al.  Unusually dense crystal packings of ellipsoids. , 2004, Physical review letters.

[175]  F. Stillinger,et al.  Improving the Density of Jammed Disordered Packings Using Ellipsoids , 2004, Science.

[176]  F. Stillinger,et al.  Jamming in hard sphere and disk packings , 2004 .

[177]  Aleksandar Donev,et al.  Breakdown of elasticity theory for jammed hard-particle packings: conical nonlinear constitutive theory , 2003 .

[178]  Salvatore Torquato,et al.  Local density fluctuations, hyperuniformity, and order metrics. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[179]  O. Musin The kissing number in four dimensions , 2003, math/0309430.

[180]  Hernán A. Makse,et al.  Measuring the distribution of interdroplet forces in a compressed emulsion system , 2003 .

[181]  W. Góźdź Critical-point and coexistence curve properties of a symmetric mixture of nonadditive hard spheres: A finite size scaling study , 2003 .

[182]  A. Philipse,et al.  Random packings of spheres and spherocylinders simulated by mechanical contraction. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[183]  Andrea J. Liu,et al.  Jamming at zero temperature and zero applied stress: the epitome of disorder. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[184]  Z. Stachurski Definition and properties of ideal amorphous solids. , 2003, Physical review letters.

[185]  S. Torquato,et al.  Multifunctional composites: optimizing microstructures for simultaneous transport of heat and electricity. , 2002, Physical review letters.

[186]  Charles Radin,et al.  Densest Packing of Equal Spheres in Hyperbolic Space , 2002, Discret. Comput. Geom..

[187]  Anuraag R. Kansal,et al.  Computer generation of dense polydisperse sphere packings , 2002 .

[188]  Salvatore Torquato,et al.  Diversity of order and densities in jammed hard-particle packings. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[189]  F. Stillinger,et al.  A linear programming algorithm to test for jamming in hard-sphere packings , 2002, cond-mat/0208502.

[190]  S. Torquato,et al.  Quantification of order in the Lennard-Jones system , 2002, cond-mat/0208389.

[191]  E. Santiso,et al.  Dense packing of binary and polydisperse hard spheres , 2002 .

[192]  F. Stillinger,et al.  Controlling the Short-Range Order and Packing Densities of Many-Particle Systems† , 2002, cond-mat/0207084.

[193]  S. Torquato,et al.  Cooperative origin of low-density domains in liquid water. , 2002, Physical review letters.

[194]  Salvatore Torquato,et al.  Equi-g(r) sequence of systems derived from the square-well potential , 2002 .

[195]  J. Kurchan,et al.  Testing the thermodynamic approach to granular matter with a numerical model of a decisive experiment , 2002, Nature.

[196]  H. Löwen,et al.  Freezing transition of hard hyperspheres. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[197]  B. Bonnier On the random sequential adsorption of d-dimensional cubes , 2001 .

[198]  G. Grest,et al.  Geometry of frictionless and frictional sphere packings. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[199]  Andrea J Liu,et al.  Random packings of frictionless particles. , 2001, Physical review letters.

[200]  F. Stillinger,et al.  Multiplicity of Generation, Selection, and Classification Procedures for Jammed Hard-Particle Packings † , 2001, cond-mat/0112319.

[201]  Henry Cohn,et al.  New upper bounds on sphere packings I , 2001, math/0110009.

[202]  Henry Cohn New upper bounds on sphere packings II , 2001, math/0110010.

[203]  R. Ellis Macromolecular crowding : obvious but underappreciated , 2022 .

[204]  S. Edwards,et al.  The tensorial formulation of volume function for packings of particles , 2001 .

[205]  F. Stillinger Lattice sums and their phase diagram implications for the classical Lennard-Jones model , 2001 .

[206]  T. Cremer,et al.  Chromosome territories, nuclear architecture and gene regulation in mammalian cells , 2001, Nature Reviews Genetics.

[207]  Pablo G. Debenedetti,et al.  Relationship between structural order and the anomalies of liquid water , 2001, Nature.

[208]  Salvatore Torquato,et al.  Nonequilibrium hard-disk packings with controlled orientational order , 2000 .

[209]  Thomas M Truskett,et al.  Towards a quantification of disorder in materials: distinguishing equilibrium and glassy sphere packings , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[210]  Parisi,et al.  Toy model for the mean-field theory of hard-sphere liquids , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[211]  Thomas M Truskett,et al.  Is random close packing of spheres well defined? , 2000, Physical review letters.

[212]  J. Roux Geometric origin of mechanical properties of granular materials. , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[213]  M. Henk,et al.  Densest lattice packings of 3-polytopes , 1999, Comput. Geom..

[214]  H L Frisch,et al.  High dimensionality as an organizing device for classical fluids. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[215]  D. Frenkel ENTROPY-DRIVEN PHASE TRANSITIONS , 1999 .

[216]  S. B. Yuste,et al.  EQUATION OF STATE OF A MULTICOMPONENT D – DIMENSIONAL HARD – SPHERE FLUID , 1999, cond-mat/0204246.

[217]  M. Dijkstra,et al.  Direct simulation of the phase behavior of binary hard-sphere mixtures: test of the depletion potential description , 1999 .

[218]  M. Dijkstra PHASE BEHAVIOR OF NONADDITIVE HARD-SPHERE MIXTURES , 1998 .

[219]  Andrea J. Liu,et al.  Nonlinear dynamics: Jamming is not just cool any more , 1998, Nature.

[220]  D. Huse,et al.  STACKING ENTROPY OF HARD-SPHERE CRYSTALS , 1998, cond-mat/9810287.

[221]  Luc Oger,et al.  Tessellation of binary assemblies of spheres , 1998 .

[222]  Robert Connelly,et al.  Finite and Uniform Stability of Sphere Packings , 1998, Discret. Comput. Geom..

[223]  Miklós Ajtai,et al.  The shortest vector problem in L2 is NP-hard for randomized reductions (extended abstract) , 1998, STOC '98.

[224]  S. Alexander,et al.  Amorphous solids: their structure, lattice dynamics and elasticity , 1998 .

[225]  Arjun G. Yodh,et al.  Self-assembly of colloidal crystals , 1998 .

[226]  J. Sherwood,et al.  LETTER TO THE EDITOR: Packing of spheroids in three-dimensional space by random sequential addition , 1997 .

[227]  R. Jullien,et al.  Packing at random in curved space and frustration : a numerical study , 1997 .

[228]  Olivier Pouliquen,et al.  Crystallization of non-Brownian Spheres under Horizontal Shaking , 1997 .

[229]  E. Trizac,et al.  Stability of the AB crystal for asymmetric binary hard sphere mixtures , 1997 .

[230]  J. Hansen,et al.  Osmotic depletion, non-additivity and phase separation , 1997 .

[231]  Peter G. Bolhuis,et al.  Tracing the phase boundaries of hard spherocylinders , 1997 .

[232]  W. V. Megen,et al.  Effect of particle size distribution on crystallisation and the glass transition of hard sphere colloids , 1996 .

[233]  Rintoul,et al.  Metastability and Crystallization in Hard-Sphere Systems. , 1996, Physical review letters.

[234]  Lado Integral equation theory of polydisperse colloidal suspensions using orthogonal polynomial expansions. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[235]  Rintoul,et al.  Structure and transport properties of a porous magnetic gel via x-ray microtomography. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[236]  C. P. Mason,et al.  The isotropic–nematic phase transition in uniaxial hard ellipsoid fluids: Coexistence data and the approach to the Onsager limit , 1996 .

[237]  C. Shew,et al.  Phase behavior of the Widom–Rowlinson mixture , 1996 .

[238]  E. Lomba,et al.  Phase stability of binary non‐additive hard‐sphere mixtures: A self‐consistent integral equation study , 1996 .

[239]  W. Russel,et al.  Measurement of the hard-sphere equation of state using screened charged polystyrene colloids. , 1996, Physical review. B, Condensed matter.

[240]  Yang,et al.  Simulation of correlated and uncorrelated packing of random size spheres. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[241]  N. J. A. Sloane,et al.  What are all the best sphere packings in low dimensions? , 1995, Discret. Comput. Geom..

[242]  T. Lubensky,et al.  Principles of Condensed Matter Physics by P. M. Chaikin , 1995 .

[243]  Torquato Nearest-neighbor statistics for packings of hard spheres and disks. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[244]  Torquato Mean nearest-neighbor distance in random packings of hard D-dimensional spheres. , 1995, Physical review letters.

[245]  R. Dickman,et al.  Critical behavior of the Widom-Rowlinson lattice model , 1995, chem-ph/9502005.

[246]  P. Pusey,et al.  Binary hard-sphere mixtures: a comparison between computer simulation and experiment , 1995 .

[247]  Alexander Z. Zinchenko,et al.  Algorithm for random close packing of spheres with periodic boundary conditions , 1994 .

[248]  P. Viot,et al.  Pair correlation function in random sequential adsorption processes , 1994 .

[249]  R. J. Speedy,et al.  On the reproducibility of glasses , 1994 .

[250]  Frenkel,et al.  Evidence for entropy-driven demixing in hard-core fluids. , 1994, Physical review letters.

[251]  D. Frenkel,et al.  Entropy-driven formation of a superlattice in a hard-sphere binary mixture , 1993, Nature.

[252]  Michael P. Allen,et al.  Simulations using hard particles , 1993, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[253]  Christos N. Likos,et al.  Complex alloy phases for binary hard-disc mixtures , 1993 .

[254]  Pascal Viot,et al.  Random sequential adsorption of anisotropic particles. I. Jamming limit and asymptotic behavior , 1992 .

[255]  Bartlett,et al.  Superlattice formation in binary mixtures of hard-sphere colloids. , 1992, Physical review letters.

[256]  B. Lubachevsky,et al.  Disks vs. spheres: Contrasting properties of random packings , 1991 .

[257]  Pierre Schaaf,et al.  Random sequential addition of hard spheres , 1991 .

[258]  Salvatore Torquato,et al.  Effective conductivity of suspensions of hard spheres by Brownian motion simulation , 1991 .

[259]  Hans Jürgen Herrmann,et al.  Space-Filling Bearings , 1990 .

[260]  B. Lubachevsky,et al.  Geometric properties of random disk packings , 1990 .

[261]  D. Frenkel,et al.  Computer simulation of solid-liquid coexistence in binary hard sphere mixtures , 1989 .

[262]  Rosenfeld,et al.  Free-energy model for the inhomogeneous hard-sphere fluid mixture and density-functional theory of freezing. , 1989, Physical review letters.

[263]  R. D. Vigil,et al.  Random sequential adsorption of unoriented rectangles onto a plane , 1989 .

[264]  Cooper Random-sequential-packing simulations in three dimensions for spheres. , 1988, Physical review. A, General physics.

[265]  D. Frenkel,et al.  Thermodynamic stability of a smectic phase in a system of hard rods , 1988, Nature.

[266]  A. Kerstein Percolation model of polydisperse composite solid propellant combustion , 1987 .

[267]  Wiley,et al.  Numerical simulation of the dense random packing of a binary mixture of hard spheres: Amorphous metals. , 1987, Physical review. B, Condensed matter.

[268]  Jodrey,et al.  Computer simulation of close random packing of equal spheres. , 1985, Physical review. A, General physics.

[269]  Daan Frenkel,et al.  The hard ellipsoid-of-revolution fluid I. Monte Carlo simulations , 1985 .

[270]  Daan Frenkel,et al.  The hard ellipsoid-of-revolution fluid , 1985 .

[271]  M. Silbert,et al.  Percus-Yevick results for a binary mixture of hard spheres with non-additive diameters , 1984 .

[272]  D. Frenkel,et al.  Phase diagram of a system of hard ellipsoids , 1984 .

[273]  P. Steinhardt,et al.  Bond-orientational order in liquids and glasses , 1983 .

[274]  N. Majlis,et al.  Computer simulation model of the structure of ion implanted impurities in semiconductors , 1983 .

[275]  Daan Frenkel,et al.  Molecular dynamics study of the dynamical properties of an assembly of infinitely thin hard rods , 1983 .

[276]  James G. Berryman,et al.  Random close packing of hard spheres and disks , 1983 .

[277]  G. Stell,et al.  Polydisperse systems: Statistical thermodynamics, with applications to several models including hard and permeable spheres , 1982 .

[278]  Hinsen,et al.  Dielectric constant of a suspension of uniform spheres. , 1982, Physical review. B, Condensed matter.

[279]  A. Baram,et al.  Third and fourth virial coefficients of hard hyperspheres of arbitrary dimensionality , 1982 .

[280]  C. Angell,et al.  Diffusivity of the hard-sphere model in the region of fluid metastability , 1981 .

[281]  R. Swendsen Dynamics of random sequential adsorption , 1981 .

[282]  J. Feder Random sequential adsorption , 1980 .

[283]  M. Tanemura,et al.  Geometrical models of territory. I. Models for synchronous and asynchronous settlement of territories. , 1980, Journal of theoretical biology.

[284]  L. Finegold,et al.  Maximum density of random placing of membrane particles , 1979, Nature.

[285]  N. J. A. Sloane,et al.  New Bounds on the Number of Unit Spheres That Can Touch a Unit Sphere in n Dimensions , 1979, J. Comb. Theory, Ser. A.

[286]  Keishi Gotoh,et al.  Statistical geometrical approach to random packing density of equal spheres , 1974, Nature.

[287]  L. Verlet,et al.  Perturbation theory for the thermodynamic properties of simple liquids , 1972 .

[288]  W. Visscher,et al.  Random Packing of Equal and Unequal Spheres in Two and Three Dimensions , 1972, Nature.

[289]  H. C. Andersen,et al.  Role of Repulsive Forces in Determining the Equilibrium Structure of Simple Liquids , 1971 .

[290]  J. Lebowitz,et al.  Mixtures of Hard Spheres with Nonadditive Diameters: Some Exact Results and Solution of PY Equation , 1971 .

[291]  K. E. Starling,et al.  Equilibrium Thermodynamic Properties of the Mixture of Hard Spheres , 1971 .

[292]  John S. Rowlinson,et al.  New Model for the Study of Liquid–Vapor Phase Transitions , 1970 .

[293]  D. Kilgour,et al.  The density of random close packing of spheres , 1969 .

[294]  F. Stillinger,et al.  Limiting polytope geometry for rigid rods, disks, and spheres , 1969 .

[295]  Fred Lado,et al.  Equation of State of the Hard‐Disk Fluid from Approximate Integral Equations , 1968 .

[296]  M Goldberg,et al.  Viruses and a mathematical problem. , 1967, Journal of molecular biology.

[297]  L. Reatto,et al.  Phonons and the Properties of a Bose System , 1967 .

[298]  B. Widom,et al.  Random Sequential Addition of Hard Spheres to a Volume , 1966 .

[299]  Frank H. Stillinger,et al.  Systematic Approach to Explanation of the Rigid Disk Phase Transition , 1964 .

[300]  Joel L. Lebowitz,et al.  Exact Solution of Generalized Percus-Yevick Equation for a Mixture of Hard Spheres , 1964 .

[301]  G. Stell The Percus-Yevick equation for the radial distribution function of a fluid , 1963 .

[302]  W. W. Wood,et al.  Equation of State of Classical Hard Spheres at High Density , 1962 .

[303]  J. D. BERNAL,et al.  Packing of Spheres: Co-ordination of Randomly Packed Spheres , 1960, Nature.

[304]  A. Florian,et al.  Ausfüllung der Ebene durch Kreise , 1960 .

[305]  C. Domb,et al.  On the theory of cooperative phenomena in crystals , 1960 .

[306]  J. D. Bernal,et al.  Geometry of the Structure of Monatomic Liquids , 1960, Nature.

[307]  Howard Reiss,et al.  Statistical Mechanics of Rigid Spheres , 1959 .

[308]  C. A. Rogers The Packing of Equal Spheres , 1958 .

[309]  Jerome K. Percus,et al.  Analysis of Classical Statistical Mechanics by Means of Collective Coordinates , 1958 .

[310]  B. Alder,et al.  Phase Transition for a Hard Sphere System , 1957 .

[311]  H. R. Anderson,et al.  Scattering by an Inhomogeneous Solid. II. The Correlation Function and Its Application , 1957 .

[312]  Richard Phillips Feynman,et al.  Energy Spectrum of the Excitations in Liquid Helium , 1956 .

[313]  L. Onsager THE EFFECTS OF SHAPE ON THE INTERACTION OF COLLOIDAL PARTICLES , 1949 .

[314]  C. Rogers,et al.  Hlawka’s theorem in the geometry of numbers , 1947 .

[315]  L. Onsager Crystal statistics. I. A two-dimensional model with an order-disorder transition , 1944 .

[316]  Paul J. Flory,et al.  Intramolecular Reaction between Neighboring Substituents of Vinyl Polymers , 1939 .

[317]  H. F. Blichfeldt The minimum value of quadratic forms, and the closest packing of spheres , 1929 .

[318]  F. Zernike,et al.  Die Beugung von Röntgenstrahlen in Flüssigkeiten als Effekt der Molekülanordnung , 1927 .

[319]  J. Lunine,et al.  Predictive Self-Assembly of Polyhedra into Complex Structures , 2013 .

[320]  Accidental deviations of density and opalescence at the critical point of a single substance , 2010 .

[321]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[322]  Lori R Hilden,et al.  Physics of amorphous solids. , 2004, Journal of pharmaceutical sciences.

[323]  E. Saff,et al.  Discretizing Manifolds via Minimum Energy Points , 2004 .

[324]  S. Torquato Random Heterogeneous Materials , 2002 .

[325]  Noam D. Elkies,et al.  Lattices , Linear Codes , and Invariants , Part I , 2000 .

[326]  Thomas M Truskett,et al.  Structural precursor to freezing in the hard-disk and hard-sphere systems , 1998 .

[327]  Adamczyk,et al.  Influence of Polydispersity on Random Sequential Adsorption of Spherical Particles , 1997, Journal of colloid and interface science.

[328]  Sam F. Edwards,et al.  The Role of Entropy in the Specification of a Powder , 1994 .

[329]  K. Ball A lower bound for the optimal density of lattice packings , 1992 .

[330]  Vigil,et al.  Random sequential adsorption of parallel squares. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[331]  Herrmann,et al.  Space-filling bearings. , 1990, Physical review letters.

[332]  Przemyslaw Prusinkiewicz,et al.  The Algorithmic Beauty of Plants , 1990, The Virtual Laboratory.

[333]  D. A. Saville,et al.  Colloidal Dispersions: ACKNOWLEDGEMENTS , 1989 .

[334]  H. Minkowski,et al.  Diskontinuitätsbereich für arithmetische Äquivalenz , 1989 .

[335]  N. M. Proteins and Fused Cells , 1972, Nature.

[336]  Our Molecular Physics Correspondent,et al.  What is Random Packing? , 1972, Nature.

[337]  Douglas J. Hoylman THE DENSEST LATTICE PACKING OF TETRAHEDRA , 1970 .

[338]  E. Husemann.,et al.  Über die Kinetik der Kettenpolymerisationen , 1936 .

[339]  P. Tammes On the origin of number and arrangement of the places of exit on the surface of pollen-grains , 1930 .

[340]  H. Minkowski,et al.  Diskontinuitätsbereich für arithmetische Äquivalenz. , 1905 .

[341]  A. Scardicchio Estimates of the optimal density and kissing number of sphere packings in high dimensions , 2022 .