A CALIBRATION OF NICMOS CAMERA 2 FOR LOW COUNT RATES

NICMOS 2 observations are crucial for constraining distances to most of the existing sample of z > 1 ?> SNe Ia. Unlike conventional calibration programs, these observations involve long exposure times and low count rates. Reciprocity failure is known to exist in HgCdTe devices and a correction for this effect has already been implemented for high and medium count rates. However, observations at faint count rates rely on extrapolations. Here instead, we provide a new zero-point calibration directly applicable to faint sources. This is obtained via inter-calibration of NIC2 F110W/F160W with the Wide Field Camera 3 (WFC3) in the low count-rate regime using z ∼ 1 ?> elliptical galaxies as tertiary calibrators. These objects have relatively simple near-IR spectral energy distributions, uniform colors, and their extended nature gives a superior signal-to-noise ratio at the same count rate than would stars. The use of extended objects also allows greater tolerances on point-spread function profiles. We find space telescope magnitude zero points (after the installation of the NICMOS cooling system, NCS) of 25.296 ± 0.022 ?> for F110W and 25.803 ± 0.023 ?> for F160W, both in agreement with the calibration extrapolated from count rates ≳1000 times larger (25.262 and 25.799). Before the installation of the NCS, we find 24.843 ± 0.025 ?> for F110W and 25.498 ± 0.021 ?> for F160W, also in agreement with the high-count-rate calibration (24.815 and 25.470). We also check the standard bandpasses of WFC3 and NICMOS 2 using a range of stars and galaxies at different colors and find mild tension for WFC3, limiting the accuracy of the zero points. To avoid human bias, our cross-calibration was “blinded” in that the fitted zero-point differences were hidden until the analysis was finalized.

[1]  David O. Jones,et al.  TYPE Ia SUPERNOVA RATE MEASUREMENTS TO REDSHIFT 2.5 FROM CANDELS: SEARCHING FOR PROMPT EXPLOSIONS IN THE EARLY UNIVERSE , 2014, 1401.7978.

[2]  I. Hook,et al.  Lensed Type Ia supernovae as probes of cluster mass models , 2013, 1312.2576.

[3]  S. B. Cenko,et al.  TYPE-Ia SUPERNOVA RATES TO REDSHIFT 2.4 FROM CLASH: THE CLUSTER LENSING AND SUPERNOVA SURVEY WITH HUBBLE , 2013, 1310.3495.

[4]  Bernhard R. Brandl,et al.  AN ATLAS OF GALAXY SPECTRAL ENERGY DISTRIBUTIONS FROM THE ULTRAVIOLET TO THE MID-INFRARED , 2013, 1312.3029.

[5]  S. Deustua,et al.  PRECISION MEASUREMENT OF THE MOST DISTANT SPECTROSCOPICALLY CONFIRMED SUPERNOVA Ia WITH THE HUBBLE SPACE TELESCOPE , 2012, 1205.3494.

[6]  E. Bergeron,et al.  Count rate nonlinearity in near infrared detectors: inverse persistence , 2012, Other Conferences.

[7]  K. Dawson,et al.  THE HUBBLE SPACE TELESCOPE CLUSTER SUPERNOVA SURVEY. III. CORRELATED PROPERTIES OF TYPE Ia SUPERNOVAE AND THEIR HOSTS AT 0.9 < z < 1.46 , 2012, 1201.3989.

[8]  O. Lahav,et al.  THE CLUSTER LENSING AND SUPERNOVA SURVEY WITH HUBBLE: AN OVERVIEW , 2011, 1106.3328.

[9]  S. Ravindranath,et al.  CANDELS: THE COSMIC ASSEMBLY NEAR-INFRARED DEEP EXTRAGALACTIC LEGACY SURVEY—THE HUBBLE SPACE TELESCOPE OBSERVATIONS, IMAGING DATA PRODUCTS, AND MOSAICS , 2011, 1105.3753.

[10]  S. Deustua,et al.  THE HUBBLE SPACE TELESCOPE CLUSTER SUPERNOVA SURVEY. V. IMPROVING THE DARK-ENERGY CONSTRAINTS ABOVE z > 1 AND BUILDING AN EARLY-TYPE-HOSTED SUPERNOVA SAMPLE , 2011, 1105.3470.

[11]  A. Riess,et al.  An Independent Determination of WFC3-IR Zeropoints and Count Rate Non-Linearity from 2MASS Asterisms , 2011 .

[12]  A. Riess,et al.  Boosting Count-rates with Earth Limb Light and the WFC3/IR Count-rate Non-linearity , 2010 .

[13]  M. S. Burns,et al.  SPECTRA AND HUBBLE SPACE TELESCOPE LIGHT CURVES OF SIX TYPE Ia SUPERNOVAE AT 0.511 < z < 1.12 AND THE UNION2 COMPILATION , 2010, 1004.1711.

[14]  M. Wagner,et al.  AN INTENSIVE HUBBLE SPACE TELESCOPE SURVEY FOR z>1 TYPE Ia SUPERNOVAE BY TARGETING GALAXY CLUSTERS , 2009, 0908.3928.

[15]  M. S. Burns,et al.  CONSTRAINING DUST AND COLOR VARIATIONS OF HIGH-z SNe USING NICMOS ON THE HUBBLE SPACE TELESCOPE , 2009, 0906.4318.

[16]  K. Dawson,et al.  Multiwavelength observations of a rich galaxy cluster at z ~ 1 - the HST/ACS colour–magnitude diagram , 2009, 0903.3853.

[17]  K. Abazajian,et al.  THE SEVENTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY , 2008, 0812.0649.

[18]  L. Cowie,et al.  A Highly Complete Spectroscopic Survey of the GOODS-N Field , 2008, 0812.2481.

[19]  Ralph C. Bohlin,et al.  Improvements to Calnica , 2008 .

[20]  Stefano Casertano,et al.  New Hubble Space Telescope Discoveries of Type Ia Supernovae at z ≥ 1: Narrowing Constraints on the Early Behavior of Dark Energy , 2006, astro-ph/0611572.

[21]  B. T. Soifer,et al.  Photometric Redshifts in the IRAC Shallow Survey , 2006 .

[22]  Adam G. Riess,et al.  NICMOS count-rate dependent nonlinearity tests using flatfield lamps , 2006 .

[23]  Roelof S. de Jong,et al.  Correcting the NICMOS count-rate dependent non-linearity , 2006 .

[24]  Adam G. Riess,et al.  NICMOS Count Rate Dependent Non-Linearity in G096 and G141 , 2006 .

[25]  Adam G. Riess,et al.  Grism Sensitivities and Apparent Non-Linearity , 2005 .

[26]  M. Nonino,et al.  The Great Observatories Origins Deep Survey VLT/VIMOS Spectroscopy in the GOODS-South Field , 2005, 0802.2930.

[27]  A. Schwope,et al.  Discovery of an X-Ray-luminous Galaxy Cluster at z = 1.4 , 2005, astro-ph/0503004.

[28]  Stefano Casertano,et al.  Type Ia Supernova Discoveries at z > 1 from the Hubble Space Telescope: Evidence for Past Deceleration and Constraints on Dark Energy Evolution , 2004, astro-ph/0402512.

[29]  J. Newman,et al.  The Team Keck Treasury Redshift Survey of the GOODS-North Field , 2004, astro-ph/0401353.

[30]  L. Kewley,et al.  The Chandra Deep Field-South: Optical Spectroscopy. I. , 2003, astro-ph/0312324.

[31]  S. Borgani,et al.  Chandra and XMM-Newton Observations of RDCS 1252.9-2927, A Massive Cluster at z=1.24 , 2003, astro-ph/0309546.

[32]  G. Bruzual,et al.  Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.

[33]  Peter Garnavich,et al.  Cosmological Results from High-z Supernovae , 2003, astro-ph/0305008.

[34]  P. Dokkum,et al.  Cosmic-Ray Rejection by Laplacian Edge Detection , 2001, astro-ph/0108003.

[35]  Rodger I. Thompson,et al.  The Farthest Known Supernova: Support for an Accelerating Universe and a Glimpse of the Epoch of Deceleration , 2001, astro-ph/0104455.

[36]  N. Benı́tez,et al.  The Photometric Performance and Calibration of the Hubble Space Telescope Advanced Camera for Surveys , 2005, astro-ph/0507614.

[37]  M. Chevallier,et al.  ACCELERATING UNIVERSES WITH SCALING DARK MATTER , 2000, gr-qc/0009008.

[38]  J. Kneib,et al.  RX J0911+05: A Massive Cluster Lens at z = 0.769 , 2000, astro-ph/0006106.

[39]  D. Hogg,et al.  Caltech Faint Galaxy Redshift Survey. X. A Redshift Survey in the Region of the Hubble Deep Field North , 1999, astro-ph/9912048.

[40]  Rodger I. Thompson,et al.  Near-Infrared Camera and Multi-Object Spectrometer Observations of the Hubble Deep Field: Observations, Data Reduction, and Galaxy Photometry , 1999 .

[41]  George F. Hartig,et al.  Long-wavelength scattered-light halos in ASC CCDs , 1998, Astronomical Telescopes and Instrumentation.

[42]  A. Pickles A Stellar Spectral Flux Library: 1150–25000 Å , 1998 .

[43]  D. Fabricant,et al.  A Spectroscopic Survey of the Galaxy Cluster CL 1358+62 at z = 0.328 , 1998, astro-ph/9801137.

[44]  John W. MacKenty NEAR INFRARED CAMERA AND MULTI-OBJECT SPECTROMETER INSTRUMENT HANDBOOK , 1997 .

[45]  Rodger I. Thompson NICMOS: Near Infrared Camera and Multi-Object Spectrometer , 1992 .

[46]  J. Mathis,et al.  The relationship between infrared, optical, and ultraviolet extinction , 1989 .

[47]  G. Abell,et al.  A Catalog of Rich Clusters of Galaxies , 1989 .

[48]  G. Abell The Distribution of rich clusters of galaxies , 1958 .