A Critical Review of Electric and Electromagnetic Flow Control Research Applied to Aerodynamics

*† ‡ Fifty years ago, publications began to discuss the possibilities of electromagnetic flow control (EMFC) to improve aerodynamic performance. This led to an era of research that focused on coupling the fundamentals of magnetohydrodynamics (MHD) with propulsion, control, and power generation systems. Unfortunately, very few designs made it past an experimental phase as, among other issues, power consumption was unreasonably high. Recent proposed advancements in technology like the MARIAH hypersonic wind tunnel and the AJAX scramjet engine have led to a new phase of MHD research in the aerospace industry, with many interdisciplinary applications. Aside from propulsion systems and channel flow accelerators, electromagnetic flow control concepts applied to control surface aerodynamics have not seen the same level of advancement that may eventually produce a device that can be integrated with an aircraft or missile. Therefore, the purpose of this paper is to review the overall feasibility of the different electric and electromagnetic flow control concepts. Emphasis is placed on EMFC and experimental work.

[1]  Sohail Zaidi,et al.  Snowplow Surface Discharge in Magnetic Field for High Speed Boundary Layer Control , 2006 .

[2]  Mikhail N. Shneider,et al.  Modeling of plasma virtual shape control of ram/scramjet inlet and isolator , 2004 .

[3]  Igor V. Adamovich,et al.  Experimental and Computational Studies of Low-Temperature M=4 Flow Deceleration by Lorentz Force 1 , 2007 .

[4]  Mikhail N. Shneider,et al.  MODELING OF PLASMA GENERATION IN REPETITIVE ULTRA-SHORT DC, MICROWAVE, AND LASER PULSES , 2001 .

[5]  J.F. Liu,et al.  Thermal stability and performance data for SmCo 2:17 high-temperature magnets on PPM focusing structures , 2005, IEEE Transactions on Electron Devices.

[6]  Michael H. Walmer,et al.  Overview of Recent Progress in Sm-Co Based Magnets , 2006 .

[7]  M. Marinescu,et al.  Current Status of Rare-Earth Permanent Magnet Research in USA , 2006 .

[8]  Walter R. Lempert,et al.  MHD Flow Control and Power Generation in Low-Temperature Supersonic Flows , 2006 .

[9]  Gloyd A. Simmons,et al.  OVERVIEW OF THE NASA MARIAH PROJECT AND SUMMARY OF TECHNICAL RESULTS , 1998 .

[10]  L. E. Rittenhouse,et al.  A PHYSICAL MODEL OF THE ELECTRIC DISCHARGE WITH COLD ELECTRODES IN A SUPERSONIC SEEDED PLASMA , 1965 .

[11]  James Menart,et al.  Total Drag and Lift Measurements in a Mach 5 Flow Affected by a Plasma Discharge and a Magnetic Field , 2005 .

[12]  R. M. Gundersen,et al.  CLASS OF EXACT SOLUTIONS OF NONISENTROPIC, ONEDIMENSIONAL MAGNETOHYDRODYNAMIC FLOW , 1963 .

[13]  Gloyd A. Simmons,et al.  ELECTRON ATTACHMENT IN SEEDED AIR FOR HYPERVELOCITY MHD ACCELERATOR PROPULSION WIND TUNNEL APPLICATIONS , 1998 .

[14]  Eric Moreau,et al.  Airflow control by non-thermal plasma actuators , 2007 .

[15]  Roger L. Kimmel,et al.  Hypersonic Experimental Facility for Magnetoaerodynamic Interactions , 2005 .

[16]  Mikhail N. Shneider,et al.  Steering Moments Creation in Supersonic Flow by Off-Axis Plasma Heat Addition , 2006 .

[17]  Edward E. Zukoski,et al.  Recombination, ionization, and nonequilibrium electrical conductivity in seeded plasmas , 1966 .

[18]  Joseph Shang,et al.  Investigation of Effects Caused b y a Pulsed Discharge and a Magnetic Field in a Mach 5 Flow , 2005 .

[19]  Eric J. Jumper,et al.  Mechanisms and Responses of a Single Dielectric Barrier Plasma Actuator: Plasma Morphology , 2004 .

[20]  Peter Sherrouse,et al.  Shock Structure of a Spherical Projectile in Weakly Ionized Air , 1999 .

[21]  G. I. Mishin,et al.  EXPERIMENTAL INVESTIGATION OF THE FLIGHT OF A SPHERE IN WEAKLY IONIZED AIR , 1997 .

[22]  Ronald J. Lipinski,et al.  Electron-Beam-Generated Plasmas in Hypersonic Magnetohydrodynamic Channels , 2001 .

[23]  Ulrich Kogelschatz,et al.  From ozone generators to flat television screens: history and future potential of dielectric-barrier discharges , 1999 .

[24]  Walter R. Lempert,et al.  DEVELOPMENT AND OPERATION OF A SUPERSONIC NONEQUILIBRIUM MHD CHANNEL 1 , 2004 .

[25]  W. A. Mair,et al.  Supersonic gas flow , 1954 .

[26]  Joseph Shang,et al.  RECENT RESEARCH IN MAGNETO-AERODYNAMICS , 2001 .

[27]  S. Starikovskaia,et al.  Plasma assisted ignition and combustion , 2006 .

[28]  Claudio Bruno,et al.  Electro-magnetic interactions in a hypersonic propulsion system , 1997 .

[29]  J. S. Shang,et al.  Experimental simulation of magneto-aerodynamic hypersonics , 2000 .

[30]  James Menart,et al.  Effect of magnetic fields on surface plasma discharges at Mach 5 , 2006 .

[31]  A. L. Kuranov,et al.  Magnetohydrodynamic Control on Hypersonic Aircraft Under "Ajax" Concept , 2003 .

[32]  B. Ganguly,et al.  Plasmas in high speed aerodynamics , 2005 .

[33]  Gernot Krabbes,et al.  New permanent magnets , 2001 .

[34]  Masuhiro Kogoma,et al.  Appearance of stable glow discharge in air, argon, oxygen and nitrogen at atmospheric pressure using a 50 Hz source , 1993 .

[35]  Takashi Abe,et al.  Expansion Tube Experiment of Applied Magnetic Field Effect on Reentry Plasma , 2008 .

[36]  Edward E. Zukoski,et al.  Experiments concerning nonequilibrium conductivity in a seeded plasma , 1964 .

[37]  J. Roth,et al.  Aerodynamic flow acceleration using paraelectric and peristaltic electrohydrodynamic effects of a One Atmosphere Uniform Glow Discharge Plasma , 2003 .

[38]  Evgeniy Gurijanov,et al.  AJAX - New directions in hypersonic technology , 1996 .

[39]  C. H. Kruger,et al.  Effect of multispecies ionization on electrical conductivity calculations. , 1968 .

[40]  E. Jumper,et al.  Mechanisms and Responses of a Dielectric Barrier Plasma Actuator: Geometric Effects , 2004 .

[41]  T. Corke,et al.  SDBD plasma enhanced aerodynamics: concepts, optimization and applications , 2007 .

[42]  T. K. Chu,et al.  Temperature measurement of an alkali metal- seeded plasma in an electric field. , 1968 .

[43]  George E. Caledonia,et al.  Ionization Phenomena About the Space Shuttle. , 1986 .

[44]  S. Starikovskaia,et al.  Plasma Control of Boundary Layer Using Low-Temperature Non-equilibrium Plasma of Gas Discharge , 2005 .

[45]  Igor V. Adamovich,et al.  Shock wave control by nonequilibrium plasmas in cold supersonic gas flows , 2000 .

[46]  Walter R. Lempert,et al.  MHD Supersonic Boundary Layer Control Using Pulsed Discharge Ionization , 2005 .

[47]  J. Stace,et al.  Experimental investigation of a salt water turbulent boundary layer modified by an applied streamwise magnetohydrodynamic body force , 1995 .

[48]  David G. Elliott,et al.  Magnetohydrodynamic power systems , 1967 .

[49]  C. Bishop,et al.  Nonequilibrium Ionization in a High‐Pressure Cesium‐Helium Transient Discharge , 1963 .

[50]  Walter R. Lempert,et al.  Measurement of Flow Conductivity and Density Fluctuations in Supersonic Nonequilibrium Magnetohydrodynamic Flows , 2005 .

[51]  James Dillon Cobine,et al.  Gaseous conductors : theory and engineering applications , 1958 .

[52]  C. Mayoux,et al.  Experimental and theoretical study of a glow discharge at atmospheric pressure controlled by dielectric barrier , 1998 .

[53]  Laxminarayan L. Raja,et al.  Characterization of a Direct-Current Glow Discharge Plasma Actuator in Low-Pressure Supersonic Flow , 2007 .

[54]  James Menart,et al.  Study of Surface and Volumetric Heating Effects in a Mach 5 Flow , 2004 .

[55]  Roger F. Harrington,et al.  Introduction to electromagnetic engineering , 2003 .

[56]  S Takezawa,et al.  OPERATION OF THE THRUSTER FOR SUPERCONDUCTING ELECTROMAGNETOHYDRODYNAMIC PROPULSION SHIP "YAMAMOTO 1" , 1995 .

[57]  Ernst Stuhlinger The Flight Path of an Electrically Propelled Space Ship , 1957 .

[58]  Walter R. Lempert,et al.  Low-temperature M=3 flow deceleration by Lorentz force , 2006 .

[59]  R. L. Brown Benefits and pitfalls when using permanent magnet motors in spinning applications , 1998, 1998 IEEE Annual Textile, Fiber and Film Industry Technical Conference (Cat. No.98CH36246).

[60]  Thomas C. Corke,et al.  Overview of Plasma Flow Control: Concepts, Optimization, and Applications , 2005 .

[61]  T. McLaughlin,et al.  Mechanisms and Responses of a Single Dielectric Barrier Plasma , 2003 .

[62]  L. S. Frost,et al.  Conductivity of Seeded Atmospheric Pressure Plasmas , 1961 .

[63]  Eric M. Braun Electromagnetic Flow Control: A Review And Experimental Development And Testing Of A Compact Actuator , 2009 .

[64]  R. A. Becker Thermionic space power systems review. , 1967 .

[65]  D. H. Polk,et al.  MEASUREMENT OF NONEQUILIBRIUM ELECTRICAL CONDUCTIVITY IN MERCURY VAPOR SEEDED WITH POTASSIUM , 1965 .

[66]  G. W. Garrison ELECTRICAL CONDUCTIVITY OF A SEEDED NITROGEN PLASMA. , 1968 .

[67]  Stephen P. Wilkinson,et al.  FLOW FIELD MEASUREMENTS OF PARAELECTRIC, PERISTALTIC, AND COMBINED PLASMA ACTUATORS BASED ON THE ONE ATMOSPHERE UNIFORM GLOW DISCHARGE PLASMA (OAUGDP) , 2004 .

[68]  V. I. Lagutin,et al.  Aerodynamic drag reduction by plasma and hot-gas injection , 2000 .

[69]  I. R. Harris,et al.  A study of the thermal demagnetisation behaviour of Nd–Fe–B sintered magnets by a magnetic field mapping system , 2002 .

[70]  Walter R. Lempert,et al.  Lorentz Force Effect on a Supersonic Ionized Boundary Layer , 2004 .

[71]  Sivaram Gogineni,et al.  Feasibility study of MHD control of cold supersonic plasma flows , 2002 .

[72]  A. V. Cleaver,et al.  The atomic rocket. III , 1949 .

[73]  R. Jahn,et al.  Physics of Electric Propulsion , 1968 .

[74]  Anatoly A. Maslov,et al.  Influence of a Counterflow Plasma Jet on Supersonic Blunt-Body Pressures , 2002 .

[75]  S. Way,et al.  Electromagnetic Propulsion for Cargo Submarines , 1968 .

[76]  R. Ziemer,et al.  Experimental Investigation in Magneto-Aerodynamics , 1959 .

[77]  E. L. Resler,et al.  The Prospects for Magneto-Aerodynamics— Correction and Addition* , 1959 .

[78]  Walter R. Lempert,et al.  Low-Temperature M=3 Flow Deceleration by Lorentz Force , 2006 .

[79]  W. R. Mickelsen Auxiliary and primary electric propulsion - Present and future. , 1967 .

[80]  Peter C. Dent,et al.  THERMAL STABILITY AND RADIATION RESISTANCE OF SM-CO BASED PERMANENT MAGNETS , 2007 .

[81]  Wim Schoenmaker,et al.  Introduction to Electromagnetism , 2005 .

[82]  Mikhail N. Shneider,et al.  Magnetohydrodynamic and Electrohydrodynamic Control of Hypersonic Flows of Weakly Ionized Plasmas , 2002 .

[83]  S. Zaidi,et al.  Shockwave Induced Turbulent Boundary Layer Separation Control with Plasma Actuators , 2008 .

[84]  Charles Suchomel,et al.  Perspectives on Cataloging Plasma Technologies Applied to Aeronautical Sciences , 2003 .

[85]  Hugo K. Messerle Magnetohydrodynamic Electrical Power Generation , 1995 .

[86]  Xin Dai,et al.  Optimization of the Aerodynamic Plasma Actuator as an Electrohydrodynamic (EHD) Electrical Device , 2006 .

[87]  Richard B. Miles,et al.  Magnetically Driven Surface Discharges for Shock-Wave Induced Boundary-Layer Separation Control , 2007 .

[88]  Walter R. Lempert,et al.  Low-temperature supersonic boundary layer control using repetitively pulsed magnetohydrodynamic forcing , 2005 .

[89]  David W. Bogdanoff,et al.  Magnetohydrodynamics Energy Bypass Scramjet Performance with Real Gas Effects , 2001 .

[90]  G. Brederlow,et al.  Electrical conductivity in seeded noble gas plasmas in crossed electric and magnetic fields. , 1968 .

[91]  Datta V. Gaitonde,et al.  Hypersonic Flow Control Utilizing Electromagnetic-Aerodynamic Interaction , 2008 .

[92]  M. C. Yuen,et al.  Magnetogasdynamic Re-Entry Phenomena , 1967 .

[93]  Mikhail N. Shneider,et al.  Scramjet Inlet Control by Off-Body Energy Addition: A Virtual Cowl , 2004 .

[94]  Richard B. Miles,et al.  Non-Thermal Control of Shock-Wave Induced Boundary Layer Separation using Magneto-Hydrodynamics , 2007 .

[95]  Roger L. Kimmel,et al.  UPDATE ON MHD CONTRO L OF SUPERSONIC / HYPERSONIC BOUNDARY -LAYER TRANSITION , 2003 .

[96]  L. Rossi,et al.  Electromagnetic Flow Control : Characteristic Numbers and Flow Regimes of a Wall-Normal Actuator , 2003 .

[97]  A. C. Holt Electromagnetic braking for Mars spacecraft , 1986 .

[98]  Wei Shyy,et al.  Modeling of dielectric barrier discharge-induced fluid dynamics and heat transfer , 2008 .

[99]  J. Menart,et al.  Magneto-aerodynamic interactions in weakly ionized hypersonic flow , 2002 .

[100]  S. Schweitzer,et al.  Tensor electrical conductivity of atmospheric cesium-seeded argon. , 1967 .

[101]  Manfred Stieber,et al.  Non-thermal atmospheric pressure discharges for surface modification , 2005 .

[102]  Frank K. Lu,et al.  Electrical conductivity channel for a shock tube , 2005 .

[103]  Randolph J. Wolf,et al.  Electrode effects in a seeded plasma. , 1966 .