Geometry of sets of quantum maps: A generic positive map acting on a high-dimensional system is not completely positive

We investigate the set (a) of positive, trace preserving maps acting on density matrices of size N and a sequence of its nested subsets: the sets of maps which are (b) decomposable, (c) completely positive, and (d) extended by identity impose positive partial transpose and (e) are superpositive. Working with the Hilbert–Schmidt (Euclidean) measure, we derive tight explicit two-sided bounds for the volumes of all five sets. A sample consequence is the fact that, as N increases, a generic positive map becomes not decomposable and, a fortiori, not completely positive. Due to the Jamiolkowski isomorphism, the results obtained for quantum maps are closely connected to similar relations between the volume of the set of quantum states and the volumes of its subsets (such as states with positive partial transpose or separable states) or supersets. Our approach depends on the systematic use of duality to derive quantitative estimates and on various tools of classical convexity, high-dimensional probability, and geometry of Banach spaces, some of which are not standard.

[1]  D. Brody,et al.  Geometric quantum mechanics , 1999, quant-ph/9906086.

[2]  G. C. Shephard,et al.  The difference body of a convex body , 1957 .

[3]  K. Życzkowski On the volume of the set of mixed entangled states II , 1999, quant-ph/9902050.

[4]  R. Schneider Convex Bodies: The Brunn–Minkowski Theory: Minkowski addition , 1993 .

[5]  S. Szarek,et al.  An Analysis of Completely-Positive Trace-Preserving Maps on 2x2 Matrices , 2000, quant-ph/0101003.

[6]  V. Milman,et al.  Institute for Mathematical Physics Entropy and Asymptotic Geometry of Non{symmetric Convex Bodies Entropy and Asymptotic Geometry of Non-symmetric Convex Bodies , 2022 .

[7]  Lluís Santaló,et al.  Un Invariante afín para los cuerpos convexos del espacio de n dimensiones , 2009 .

[8]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[9]  Rob Clifton,et al.  Bipartite-mixed-states of infinite-dimensional systems are generically nonseparable , 1999, quant-ph/9908028.

[10]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[11]  G. D. Chakerian,et al.  Inequalities for the difference body of a convex body , 1967 .

[12]  P. M. Mathews,et al.  STOCHASTIC DYNAMICS OF QUANTUM-MECHANICAL SYSTEMS , 1961 .

[13]  Germany,et al.  Subnormalized states and trace-nonincreasing maps , 2007 .

[14]  J. Kowski Linear transformations which preserve trace and positive semidefiniteness of operators , 1972 .

[15]  P. Slater Silver mean conjectures for 15-dimensional volumes and 14-dimensional hyperareas of the separable two-qubit systems , 2003, quant-ph/0308037.

[16]  S. Szarek,et al.  An analysis of completely positive trace-preserving maps on M2 , 2002 .

[17]  K. Życzkowski Volume of the set of separable states . II , 1999 .

[18]  A. Jamiołkowski Linear transformations which preserve trace and positive semidefiniteness of operators , 1972 .

[19]  Karol Zyczkowski,et al.  On Duality between Quantum Maps and Quantum States , 2004, Open Syst. Inf. Dyn..

[20]  G. Vidal,et al.  LOCAL DESCRIPTION OF QUANTUM INSEPARABILITY , 1998 .

[21]  Ryszard Horodecki,et al.  Quantum Information , 2001, Acta Physica Polonica A.

[22]  S. Szarek,et al.  LETTER TO THE EDITOR: On the structure of the body of states with positive partial transpose , 2005, quant-ph/0509008.

[23]  Greg Kuperberg,et al.  From the Mahler Conjecture to Gauss Linking Integrals , 2006, math/0610904.

[24]  H. Sommers,et al.  Hilbert–Schmidt volume of the set of mixed quantum states , 2003, quant-ph/0302197.

[25]  Man-Duen Choi Positive semidefinite biquadratic forms , 1975 .

[26]  Hans R. Fischer,et al.  THE GEOMETRY OF THE STATE SPACE , 1978 .

[27]  L. Gurvits,et al.  Largest separable balls around the maximally mixed bipartite quantum state , 2002, quant-ph/0204159.

[28]  M. Lewenstein,et al.  Volume of the set of separable states , 1998, quant-ph/9804024.

[29]  V. Milman,et al.  Asymptotic Theory Of Finite Dimensional Normed Spaces , 1986 .

[30]  V. Milman,et al.  New volume ratio properties for convex symmetric bodies in ℝn , 1987 .

[31]  R. Jozsa,et al.  SEPARABILITY OF VERY NOISY MIXED STATES AND IMPLICATIONS FOR NMR QUANTUM COMPUTING , 1998, quant-ph/9811018.

[32]  T. Andô Cones and norms in the tensor product of matrix spaces , 2004 .

[33]  S. Szarek Volume of separable states is super-doubly-exponentially small in the number of qubits , 2005 .

[34]  Guillaume Aubrun,et al.  Tensor products of convex sets and the volume of separable states on N qudits (10 pages) , 2005, quant-ph/0503221.

[35]  M. Horodecki,et al.  Separability of mixed states: necessary and sufficient conditions , 1996, quant-ph/9605038.

[36]  G. Marmo,et al.  GEOMETRY OF MIXED STATES AND DEGENERACY STRUCTURE OF GEOMETRIC PHASES FOR MULTI-LEVEL QUANTUM SYSTEMS: A UNITARY GROUP APPROACH , 2001 .

[37]  Werner,et al.  Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. , 1989, Physical review. A, General physics.

[38]  Geometry of quantum systems: Density states and entanglement , 2005, math-ph/0507045.

[39]  E. Størmer Positive linear maps of operator algebras , 2012 .

[40]  S. Woronowicz Nonextendible positive maps , 1976 .

[41]  Roland Hildebrand Entangled states close to the maximally mixed state , 2007 .

[42]  G. C. Shephard,et al.  Convex Bodies Associated with a Given Convex Body , 1958 .

[43]  K. Życzkowski,et al.  Geometry of entangled states , 2000, quant-ph/0006068.

[44]  J. Schwinger THE GEOMETRY OF QUANTUM STATES. , 1960, Proceedings of the National Academy of Sciences of the United States of America.

[45]  M. Horodecki,et al.  Mixed-State Entanglement and Quantum Communication , 2001, quant-ph/0109124.

[46]  Arvind,et al.  A generalized Pancharatnam geometric phase formula for three-level quantum systems , 1996, quant-ph/9605042.

[47]  M. Lewenstein,et al.  Separability and entanglement of composite quantum systems , 1997, quant-ph/9707043.

[48]  Man-Duen Choi Completely positive linear maps on complex matrices , 1975 .

[49]  An inequality for sections and projections of a convex set , 1993 .