Geometry of sets of quantum maps: A generic positive map acting on a high-dimensional system is not completely positive
暂无分享,去创建一个
[1] D. Brody,et al. Geometric quantum mechanics , 1999, quant-ph/9906086.
[2] G. C. Shephard,et al. The difference body of a convex body , 1957 .
[3] K. Życzkowski. On the volume of the set of mixed entangled states II , 1999, quant-ph/9902050.
[4] R. Schneider. Convex Bodies: The Brunn–Minkowski Theory: Minkowski addition , 1993 .
[5] S. Szarek,et al. An Analysis of Completely-Positive Trace-Preserving Maps on 2x2 Matrices , 2000, quant-ph/0101003.
[6] V. Milman,et al. Institute for Mathematical Physics Entropy and Asymptotic Geometry of Non{symmetric Convex Bodies Entropy and Asymptotic Geometry of Non-symmetric Convex Bodies , 2022 .
[7] Lluís Santaló,et al. Un Invariante afín para los cuerpos convexos del espacio de n dimensiones , 2009 .
[8] K. Brown,et al. Graduate Texts in Mathematics , 1982 .
[9] Rob Clifton,et al. Bipartite-mixed-states of infinite-dimensional systems are generically nonseparable , 1999, quant-ph/9908028.
[10] Thierry Paul,et al. Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.
[11] G. D. Chakerian,et al. Inequalities for the difference body of a convex body , 1967 .
[12] P. M. Mathews,et al. STOCHASTIC DYNAMICS OF QUANTUM-MECHANICAL SYSTEMS , 1961 .
[13] Germany,et al. Subnormalized states and trace-nonincreasing maps , 2007 .
[14] J. Kowski. Linear transformations which preserve trace and positive semidefiniteness of operators , 1972 .
[15] P. Slater. Silver mean conjectures for 15-dimensional volumes and 14-dimensional hyperareas of the separable two-qubit systems , 2003, quant-ph/0308037.
[16] S. Szarek,et al. An analysis of completely positive trace-preserving maps on M2 , 2002 .
[17] K. Życzkowski. Volume of the set of separable states . II , 1999 .
[18] A. Jamiołkowski. Linear transformations which preserve trace and positive semidefiniteness of operators , 1972 .
[19] Karol Zyczkowski,et al. On Duality between Quantum Maps and Quantum States , 2004, Open Syst. Inf. Dyn..
[20] G. Vidal,et al. LOCAL DESCRIPTION OF QUANTUM INSEPARABILITY , 1998 .
[21] Ryszard Horodecki,et al. Quantum Information , 2001, Acta Physica Polonica A.
[22] S. Szarek,et al. LETTER TO THE EDITOR: On the structure of the body of states with positive partial transpose , 2005, quant-ph/0509008.
[23] Greg Kuperberg,et al. From the Mahler Conjecture to Gauss Linking Integrals , 2006, math/0610904.
[24] H. Sommers,et al. Hilbert–Schmidt volume of the set of mixed quantum states , 2003, quant-ph/0302197.
[25] Man-Duen Choi. Positive semidefinite biquadratic forms , 1975 .
[26] Hans R. Fischer,et al. THE GEOMETRY OF THE STATE SPACE , 1978 .
[27] L. Gurvits,et al. Largest separable balls around the maximally mixed bipartite quantum state , 2002, quant-ph/0204159.
[28] M. Lewenstein,et al. Volume of the set of separable states , 1998, quant-ph/9804024.
[29] V. Milman,et al. Asymptotic Theory Of Finite Dimensional Normed Spaces , 1986 .
[30] V. Milman,et al. New volume ratio properties for convex symmetric bodies in ℝn , 1987 .
[31] R. Jozsa,et al. SEPARABILITY OF VERY NOISY MIXED STATES AND IMPLICATIONS FOR NMR QUANTUM COMPUTING , 1998, quant-ph/9811018.
[32] T. Andô. Cones and norms in the tensor product of matrix spaces , 2004 .
[33] S. Szarek. Volume of separable states is super-doubly-exponentially small in the number of qubits , 2005 .
[34] Guillaume Aubrun,et al. Tensor products of convex sets and the volume of separable states on N qudits (10 pages) , 2005, quant-ph/0503221.
[35] M. Horodecki,et al. Separability of mixed states: necessary and sufficient conditions , 1996, quant-ph/9605038.
[36] G. Marmo,et al. GEOMETRY OF MIXED STATES AND DEGENERACY STRUCTURE OF GEOMETRIC PHASES FOR MULTI-LEVEL QUANTUM SYSTEMS: A UNITARY GROUP APPROACH , 2001 .
[37] Werner,et al. Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. , 1989, Physical review. A, General physics.
[38] Geometry of quantum systems: Density states and entanglement , 2005, math-ph/0507045.
[39] E. Størmer. Positive linear maps of operator algebras , 2012 .
[40] S. Woronowicz. Nonextendible positive maps , 1976 .
[41] Roland Hildebrand. Entangled states close to the maximally mixed state , 2007 .
[42] G. C. Shephard,et al. Convex Bodies Associated with a Given Convex Body , 1958 .
[43] K. Życzkowski,et al. Geometry of entangled states , 2000, quant-ph/0006068.
[44] J. Schwinger. THE GEOMETRY OF QUANTUM STATES. , 1960, Proceedings of the National Academy of Sciences of the United States of America.
[45] M. Horodecki,et al. Mixed-State Entanglement and Quantum Communication , 2001, quant-ph/0109124.
[46] Arvind,et al. A generalized Pancharatnam geometric phase formula for three-level quantum systems , 1996, quant-ph/9605042.
[47] M. Lewenstein,et al. Separability and entanglement of composite quantum systems , 1997, quant-ph/9707043.
[48] Man-Duen Choi. Completely positive linear maps on complex matrices , 1975 .
[49] An inequality for sections and projections of a convex set , 1993 .