CMOS considerations in nanoelectromechanical carbon nanotube-based switches

In this paper, we focus on critical issues directly related to the viability of carbon nanotube-based nanoelectromechanical switches, to perform their intended functionality as logic and memory elements, through assessment of typical performance parameters with reference to complementary metal-oxide-semiconductor devices. A detailed analysis of performance metrics regarding threshold voltage control, static and dynamic power dissipation, speed, and integration density is presented. Apart from packaging and reliability issues, these switches seem to be competitive in low power, particularly low-standby power, logic and memory applications.

[1]  R. Ruoff,et al.  Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load , 2000, Science.

[2]  Charles M. Lieber,et al.  Carbon nanotube-based nonvolatile random access memory for molecular computing , 2000, Science.

[3]  H. Dai,et al.  Nanotubes as nanoprobes in scanning probe microscopy , 1996, Nature.

[4]  Keith A. Jenkins,et al.  Direct measurements of frequency response of carbon nanotube field effect transistors , 2005 .

[5]  M. Bockrath Carbon Nanotubes: Electrons in One Dimension , 1999 .

[6]  T. Nord,et al.  Effects of surface forces and phonon dissipation in a three-terminal nanorelay , 2004 .

[7]  L. Roschier,et al.  Multiwalled carbon nanotube: Luttinger versus fermi liquid , 2001 .

[8]  Jing Guo,et al.  High-field quasiballistic transport in short carbon nanotubes. , 2003, Physical review letters.

[9]  Gabriel M. Rebeiz,et al.  RF MEMS switches and switch circuits , 2001 .

[10]  P. Bernier,et al.  Diameter distribution of single wall carbon nanotubes in nanobundles , 2000 .

[11]  Larry Epp,et al.  Electromechanical carbon nanotube switches for high-frequency applications. , 2006, Nano letters.

[12]  K. Eric Drexler,et al.  Nanosystems - molecular machinery, manufacturing, and computation , 1992 .

[13]  Peter Burke,et al.  AC performance of nanoelectronics: towards a ballistic THz nanotube transistor , 2004 .

[14]  J. Kinaret,et al.  A carbon-nanotube-based nanorelay , 2002, cond-mat/0208427.

[15]  W. D. Heer,et al.  Electrostatic deflections and electromechanical resonances of carbon nanotubes , 1999, Science.

[16]  H. Dai,et al.  Individual single-wall carbon nanotubes as quantum wires , 1997, Nature.

[17]  P. Burke,et al.  Quantitative theory of nanowire and nanotube antenna performance , 2004, IEEE Transactions on Nanotechnology.

[18]  P. J. Burke An RF circuit model for carbon nanotubes , 2003 .

[19]  S. Eshelman,et al.  Micromachined low-loss microwave switches , 1999 .

[20]  Gabriel M. Rebeiz RF MEMS: Theory, Design and Technology , 2003 .

[21]  James A. Hutchby,et al.  Limits to binary logic switch scaling - a gedanken model , 2003, Proc. IEEE.

[22]  S. Tans,et al.  Room-temperature transistor based on a single carbon nanotube , 1998, Nature.

[23]  Yuji Awano,et al.  Carbon Nanotube Technologies for LSI via Interconnects , 2006, IEICE Trans. Electron..

[24]  R. Superfine,et al.  Bending and buckling of carbon nanotubes under large strain , 1997, Nature.

[25]  Gabriel M. Rebeiz,et al.  Mechanical Modeling of MEMS Devices: Static Analysis , 2004 .

[26]  J. Kinaret,et al.  Performance Gain Through Dynamic Control of Device Geometry: Nanoelectromechanical Carbon Nanotube-Based Switch , 2006, IEEE Electron Device Letters.

[27]  N. Aluru,et al.  Calculation of pull-in voltages for carbon-nanotube-based nanoelectromechanical switches , 2002 .

[28]  L.L. Mercado,et al.  Analysis of RF MEMS switch packaging Process for yield improvement , 2005, IEEE Transactions on Advanced Packaging.

[29]  Paul L. McEuen,et al.  Measurement of the quantum capacitance of interacting electrons in carbon nanotubes , 2006 .

[30]  P. McEuen,et al.  Electron Transport in Single-Walled Carbon Nanotubes , 2004 .

[31]  E. Campbell,et al.  A Three-Terminal Carbon Nanorelay , 2004 .

[32]  K. Petersen Micromechanical membrane switches on silicon , 1979 .

[33]  M. Roukes,et al.  Ultimate limits to inertial mass sensing based upon nanoelectromechanical systems , 2003, physics/0309075.

[34]  P. McEuen,et al.  A tunable carbon nanotube electromechanical oscillator , 2004, Nature.

[35]  Mark S. Lundstrom,et al.  High-κ dielectrics for advanced carbon-nanotube transistors and logic gates , 2002 .

[36]  T. Ichihashi,et al.  Single-shell carbon nanotubes of 1-nm diameter , 1993, Nature.

[37]  J. Meindl,et al.  Performance comparison between carbon nanotube and copper interconnects for gigascale integration (GSI) , 2005, IEEE Electron Device Letters.

[38]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[39]  Erik Dujardin,et al.  Self-assembled switches based on electroactuated multiwalled nanotubes , 2005 .