The circumstellar environments of high-mass protostellar objects. II. Dust continuum models

Received date / Accepted date Abstract. We analyse the dust continuum emission seen towards a sample of candidate high-mass protostellar objects, modelling the cores we recently observed at 850 m with a one-dimensional radiative transfer code. Fitting radial slices in a range of directions across sources, we identify a number of objects that have non-spherical density proles and show that for such sources tting the azimuthal averaged emission produces erroneous estimates of the source properties. We nd the majority of cores can be successfully modelled using envelopes of power-law density structure (where / r ), nding a mean power-law index of = 1:3 0:4. These envelopes extend considerably further, are more dense, and have a more shallow density prole than those bearing low-mass protostars. The majority of best-t models have an SED resembling the cold-component dust bodies previously proposed for the sample, implying the short wavelength emission seen towards the HMPOs either originates from a separate hot dust component(s), or involves mechanisms such as accretion disks, stochastic heating and/or optically thin cavities not included in the radiative transfer model. We nd evidence of smaller dust-free cavities towards some pre-UCHII sources. The modelling indicates a correlation between and optical depth, suggesting that the densest cores also tend to have the most strongly peaked power-law density proles.

[1]  T. K. Sridharan,et al.  The circumstellar environments of high-mass protostellar objects , 2004, Astronomy & Astrophysics.

[2]  F. D. Tak,et al.  The physical structure of high-mass star-forming cores , 2003 .

[3]  L. Testi,et al.  Anatomy of a high-mass star forming cloud: The G24.78+0.08 (proto)stellar cluster , 2003 .

[4]  C. McKee,et al.  The Formation of Massive Stars from Turbulent Cores , 2002, astro-ph/0206037.

[5]  Edward Bruce Churchwell,et al.  Ultra-Compact HII Regions and Massive Star Formation , 2002 .

[6]  K. Menten,et al.  CH3OH and H2O masers in high-mass star-forming regions , 2002, astro-ph/0205348.

[7]  E. Dishoeck,et al.  Physical structure and CO abundance of low-mass protostellar envelopes , 2002, astro-ph/0205068.

[8]  K. Menten,et al.  Massive molecular outflows , 2001, astro-ph/0110372.

[9]  T. K. Sridharan,et al.  High-Mass Proto-Stellar Candidates - II : Density structure from dust continuum and CS emission , 2001, astro-ph/0110370.

[10]  K. Menten,et al.  High-Mass Protostellar Candidates. I. The Sample and Initial Results , 2001, astro-ph/0110363.

[11]  G. Fuller,et al.  An Infrared Jet from a High-Mass Young Star , 2001 .

[12]  Infrared Emission from Interstellar Dust. I. Stochastic Heating of Small Grains , 2000, astro-ph/0011318.

[13]  A. Schutte,et al.  Infrared emission from 6.7-GHz methanol maser sources , 2000 .

[14]  G. Fazio,et al.  Narrowband Mid-Infrared Images and Models of the H II Complex G34.3+0.2 , 2000 .

[15]  L. Mundy,et al.  Tracing the Mass during Low-Mass Star Formation. II. Modeling the Submillimeter Emission from Preprotostellar Cores , 2000, astro-ph/0006183.

[16]  G. Blake,et al.  Structure and Evolution of the Envelopes of Deeply Embedded Massive Young Stars , 2000, astro-ph/0001527.

[17]  G. Sandell,et al.  Testing Envelope Models of Young Stellar Objects with Submillimeter Continuum and Molecular-Line Observations , 2000, astro-ph/0001021.

[18]  S. Lizano,et al.  Hot Molecular Cores and the Formation of Massive Stars , 1999 .

[19]  Ž. Ivezić,et al.  User Manual for DUSTY , 1999, astro-ph/9910475.

[20]  Hilo,et al.  SCUBA: A Common - user submillimetre camera operating on the James Clerk Maxwell telescope , 1998, astro-ph/9809122.

[21]  P. Caselli,et al.  L1544: A Starless Dense Core with Extended Inward Motions , 1998 .

[22]  J. Hackwell,et al.  Infrared Spectroscopy of Ultracompact H II Regions , 1998 .

[23]  Sridharan T. K.,et al.  Reliable Galaxy-wide identification of ultracompact H II regions , 1995 .

[24]  M. Wolfire,et al.  Circumstellar dust emission models , 1994 .

[25]  F. Shu,et al.  Collapse of magnetized molecular cloud cores. I: Semianalytical solution , 1993 .

[26]  P. Myers,et al.  Bolometric temperatures of young stellar objects , 1993 .

[27]  G. Garay,et al.  The compact molecular core toward G34. 3 + 0. 2 - VLA observations in the (2,2) and (3,3) lines of ammonia , 1990 .

[28]  M. Wolfire,et al.  The Infrared Emission from Dust Surrounding Newly Formed O Stars , 1990 .

[29]  E. Churchwell,et al.  The morphologies and physical properties of ultracompact H II regions , 1989 .

[30]  F. Adams,et al.  Star Formation in Molecular Clouds: Observation and Theory , 1987 .

[31]  P. Cassen,et al.  The collapse of the cores of slowly rotating isothermal clouds , 1984 .

[32]  H. M. Lee,et al.  Optical properties of interstellar graphite and silicate grains , 1984 .

[33]  M. W. Werner,et al.  Extended near-infrared emission from visual reflection nebulae , 1983 .

[34]  K. Nordsieck,et al.  The Size distribution of interstellar grains , 1977 .

[35]  F. Shu Self-similar collapse of isothermal spheres and star formation. , 1977 .