Pricing and Risk Management with High-Dimensional Quasi Monte Carlo and Global Sensitivity Analysis
暂无分享,去创建一个
Marco Bianchetti | Sergei Kucherenko | S. Kucherenko | M. Bianchetti | Stefano Scoleri | Stefano Scoleri
[1] Nilay Shah,et al. The Importance of being Global . Application of Global Sensitivity Analysis in Monte Carlo Option Pricing , 2007 .
[2] Eric Fournié,et al. Monte Carlo Methods in Finance , 2002 .
[3] B. Øksendal. Stochastic differential equations : an introduction with applications , 1987 .
[4] Paola Annoni,et al. Estimation of global sensitivity indices for models with dependent variables , 2012, Comput. Phys. Commun..
[5] D. Shahsavani,et al. Variance-based sensitivity analysis of model outputs using surrogate models , 2011, Environ. Model. Softw..
[6] H. Niederreiter. Low-discrepancy and low-dispersion sequences , 1988 .
[7] Paola Annoni,et al. Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index , 2010, Comput. Phys. Commun..
[8] A. Saltelli,et al. Reliability Engineering and System Safety , 2008 .
[9] Paul Wilmott,et al. Paul Wilmott on Quantitative Finance , 2010 .
[10] Paul Glasserman,et al. Monte Carlo Methods in Financial Engineering , 2003 .
[11] P. Kloeden,et al. Numerical Solutions of Stochastic Differential Equations , 1995 .
[12] A. Owen. THE DIMENSION DISTRIBUTION AND QUADRATURE TEST FUNCTIONS , 2003 .
[13] Anargyros Papageorgiou,et al. Deterministic Simulation for Risk Management , 1999 .
[14] Sergei S. Kucherenko,et al. On global sensitivity analysis of quasi-Monte Carlo algorithms , 2005, Monte Carlo Methods Appl..
[15] P. Boyle. Options: A Monte Carlo approach , 1977 .
[16] I. Sobol,et al. Global sensitivity indices for nonlinear mathematical models. Review , 2005 .
[17] I. Sobol,et al. Construction and Comparison of High-Dimensional Sobol' Generators , 2011 .
[18] Xiaoqun Wang,et al. Dimension Reduction Techniques in Quasi-Monte Carlo Methods for Option Pricing , 2009, INFORMS J. Comput..
[19] A. Owen,et al. Estimating Mean Dimensionality of Analysis of Variance Decompositions , 2006 .
[20] A. Saltelli,et al. Making best use of model evaluations to compute sensitivity indices , 2002 .
[21] W. Horowitz,et al. , 1 ' 2 , 2009 .
[22] D. Duffie. Dynamic Asset Pricing Theory , 1992 .
[23] A. Owen,et al. Valuation of mortgage-backed securities using Brownian bridges to reduce effective dimension , 1997 .
[24] Michael Zinganel. 1:1 , 2014, Wohnen Zeigen.
[25] I. Sobola,et al. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates , 2001 .
[26] Anargyros Papageorgiou,et al. The Brownian Bridge Does Not Offer a Consistent Advantage in Quasi-Monte Carlo Integration , 2002, J. Complex..
[27] Oren Cheyette. Interest Rate Models , 2002 .
[28] A. Owen,et al. Quasi-Regression and the Relative Importance of the ANOVA Components of a Function , 2002 .
[29] PRINCETON UNIVERSITY PRESS , 2005 .
[30] D. Brigo,et al. Interest Rate Models , 2001 .
[31] P. Kloeden,et al. Numerical Solution of Stochastic Differential Equations , 1992 .
[32] Anargyros Papageorgiou,et al. New Results on Deterministic Pricing of Financial Derivatives , 1996 .
[33] S. Rahman. Reliability Engineering and System Safety , 2011 .
[34] I. Sobol. On the distribution of points in a cube and the approximate evaluation of integrals , 1967 .
[35] Marco Bianchetti,et al. Pricing and Risk Management with High-Dimensional Quasi-Monte Carlo and Global Sensitivity Analysis: Technical Paper , 2015 .
[36] Joseph F. Traub,et al. Faster Valuation of Financial Derivatives , 1995 .
[37] I. Sobol. Global Sensitivity Indices for Nonlinear Mathematical Models , 2004 .
[38] Peter Jaeckel,et al. Monte Carlo methods in finance , 2002 .
[39] Nilay Shah,et al. The identification of model effective dimensions using global sensitivity analysis , 2011, Reliab. Eng. Syst. Saf..
[40] Art B. Owen,et al. Variance and discrepancy with alternative scramblings , 2002 .
[41] Ilya M. Sobol,et al. Quasi-Monte Carlo: A high-dimensional experiment , 2014, Monte Carlo Methods Appl..
[42] N. Metropolis. THE BEGINNING of the MONTE CARLO METHOD , 2022 .
[43] Liguo Wang,et al. Numerical Solutions of Stochastic Differential Equations , 2016 .
[44] P. Glasserman,et al. Monte Carlo methods for security pricing , 1997 .
[45] Dan Rosen,et al. Measuring Portfolio Risk Using Quasi Monte Carlo Methods , 1998 .
[46] Takuji Nishimura,et al. Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator , 1998, TOMC.