GENERIC Integrators: Structure Preserving Time Integration for Thermodynamic Systems

Abstract Thermodynamically admissible evolution equations for non-equilibrium systems are known to possess a distinct mathematical structure. Within the GENERIC (general equation for the non-equilibrium reversible–irreversible coupling) framework of non-equilibrium thermodynamics, which is based on continuous time evolution, we investigate the possibility of preserving all the structural elements in time-discretized equations. Our approach, which follows Moser’s [1] construction of symplectic integrators for Hamiltonian systems, is illustrated for the damped harmonic oscillator. Alternative approaches are sketched.

[1]  A. Bravetti,et al.  Contact Hamiltonian Mechanics , 2016, 1604.08266.

[2]  E. Hairer Backward analysis of numerical integrators and symplectic methods , 1994 .

[3]  Bernhard Maschke,et al.  An extension of Hamiltonian systems to the thermodynamic phase space: Towards a geometry of nonreversible processes , 2007 .

[4]  G. Benettin,et al.  On the Hamiltonian interpolation of near-to-the identity symplectic mappings with application to symplectic integration algorithms , 1994 .

[5]  Kaizhi Wang,et al.  Implicit variational principle for contact Hamiltonian systems , 2017 .

[6]  M. Krüger,et al.  On a variational principle in thermodynamics , 2013 .

[7]  H. C. Öttinger,et al.  Numerical Stability with Help from Entropy: Solving a Set of 13 Moment Equations for Shock Tube Problem , 2018, Journal of Non-Equilibrium Thermodynamics.

[8]  Miroslav Grmela,et al.  Dynamics and thermodynamics of complex fluids. II. Illustrations of a general formalism , 1997 .

[9]  Shin-itiro Goto,et al.  Legendre submanifolds in contact manifolds as attractors and geometric nonequilibrium thermodynamics , 2014, 1412.5780.

[10]  Peter Betsch,et al.  An energy‐entropy‐consistent time stepping scheme for nonlinear thermo‐viscoelastic continua , 2016 .

[11]  A. P. Gerasev Variational principles in irreversible thermodynamics with application to combustion waves , 2011 .

[12]  Ignacio Romero,et al.  Energy–entropy–momentum integration schemes for general discrete non‐smooth dissipative problems in thermomechanics , 2017 .

[13]  Brian E. Moore,et al.  Structure-preserving Exponential Runge-Kutta Methods , 2017, SIAM J. Sci. Comput..

[14]  J. M. Sanz-Serna,et al.  Numerical Hamiltonian Problems , 1994 .

[15]  W. Kyner,et al.  Lectures on Hamiltonian systems . Rigorous and formal stability of orbits about an oblate planet , 1968 .

[16]  Ruggero Maria Santilli The inverse problem in Newtonian mechanics , 1978 .

[17]  Eero Hirvijoki,et al.  Metriplectic integrators for the Landau collision operator , 2017, 1707.01801.

[18]  Martin Kröger,et al.  Automated symbolic calculations in nonequilibrium thermodynamics , 2010, Comput. Phys. Commun..

[19]  Iliya V. Karlin,et al.  Perfect entropy functions of the Lattice Boltzmann method , 1999 .

[20]  H. Ch. Öttinger,et al.  Beyond Equilibrium Thermodynamics , 2005 .

[21]  Hans Christian Öttinger,et al.  General projection operator formalism for the dynamics and thermodynamics of complex fluids , 1998 .

[22]  P. Morrison,et al.  Structure and structure-preserving algorithms for plasma physics , 2016, 1612.06734.

[23]  J. Marsden,et al.  Discrete mechanics and variational integrators , 2001, Acta Numerica.

[24]  H. C. Ottinger,et al.  Minimal entropic kinetic models for hydrodynamics , 2002, cond-mat/0205510.

[25]  Thermodynamically Admissible Form for Discrete Hydrodynamics , 1999, cond-mat/9901101.

[26]  Martin Kröger,et al.  Symbolic test of the Jacobi identity for given generalized ‘Poisson’ bracket , 2001 .

[27]  P. Mazur,et al.  Non-equilibrium thermodynamics, , 1963 .

[28]  S. Melchionna Design of quasisymplectic propagators for Langevin dynamics. , 2007, The Journal of chemical physics.

[29]  Miroslav Grmela,et al.  Dynamics and thermodynamics of complex fluids. I. Development of a general formalism , 1997 .

[30]  H. B. G. Casimir,et al.  On Onsager's Principle of Microscopic Reversibility , 1945 .

[31]  J. Marsden,et al.  Introduction to mechanics and symmetry , 1994 .

[32]  L. Onsager Reciprocal Relations in Irreversible Processes. II. , 1931 .