Lead-Related Quantum Emitters in Diamond

We investigate the optical properties of quantum emitters formed in diamond after the implantation of Pb and subsequent high-temperature annealing. We find narrow-band emission in two spectral ranges, indicating multiple classes of Pb-related color centers.

[1]  F. Ham Dynamical Jahn-Teller Effect in Paramagnetic Resonance Spectra: Orbital Reduction Factors and Partial Quenching of Spin-Orbit Interaction , 1965 .

[2]  Aroosa Ijaz,et al.  Optical and microwave control of germanium-vacancy center spins in diamond , 2016, 1612.02947.

[3]  M. Lukin,et al.  Indistinguishable photons from separated silicon-vacancy centers in diamond. , 2014, Physical review letters.

[4]  M. Doherty,et al.  Electronic structure of the negatively charged silicon-vacancy center in diamond , 2013, 1310.3131.

[5]  R. Kalish,et al.  Damage threshold for ion‐beam induced graphitization of diamond , 1995 .

[6]  Ravishankar Sundararaman,et al.  Nonradiative Plasmon Decay and Hot Carrier Dynamics: Effects of Phonons, Surfaces, and Geometry. , 2016, ACS nano.

[7]  J. Ziegler,et al.  SRIM – The stopping and range of ions in matter (2010) , 2010 .

[8]  G. Scuseria,et al.  Hybrid functionals based on a screened Coulomb potential , 2003 .

[9]  Dirk Englund,et al.  Material platforms for spin-based photonic quantum technologies , 2018, Nature Reviews Materials.

[10]  Á. Gali,et al.  Ab Initio Magneto-Optical Spectrum of Group-IV Vacancy Color Centers in Diamond , 2018, Physical Review X.

[11]  Kathleen A. Schwarz,et al.  JDFTx: Software for joint density-functional theory , 2017, SoftwareX.

[12]  Yanli Wang,et al.  Quantum ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009 .

[13]  D. Twitchen,et al.  Optical properties of the neutral silicon split-vacancy center in diamond , 2011 .

[14]  R. O. Jones,et al.  The density functional formalism, its applications and prospects , 1989 .

[15]  Yuri N. Palyanov,et al.  Germanium: a new catalyst for diamond synthesis and a new optically active impurity in diamond , 2015, Scientific Reports.

[16]  William A. Goddard,et al.  Ab initio phonon coupling and optical response of hot electrons in plasmonic metals , 2016, 1602.00625.

[17]  Andrei Faraon,et al.  Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond. , 2012, Physical review letters.

[18]  D. Awschalom,et al.  Quantum Spintronics: Engineering and Manipulating Atom-Like Spins in Semiconductors , 2013, Science.

[19]  M. Lukin,et al.  Quantum Nonlinear Optics with a Germanium-Vacancy Color Center in a Nanoscale Diamond Waveguide. , 2016, Physical review letters.

[20]  Single-Photon-Emitting Optical Centers in Diamond Fabricated upon Sn Implantation , 2017, 1708.01467.

[21]  M. Lukin,et al.  Silicon-Vacancy Spin Qubit in Diamond: A Quantum Memory Exceeding 10 ms with Single-Shot State Readout. , 2017, Physical review letters.

[22]  Martin Fischer,et al.  Low-temperature investigations of single silicon vacancy colour centres in diamond , 2012, 1210.3201.

[23]  Dirk Englund,et al.  Quantum nanophotonics in diamond [Invited] , 2016 .

[24]  Mikhail D. Lukin,et al.  Narrow-linewidth homogeneous optical emitters in diamond nanostructures via silicon ion implantation , 2015, 1512.03820.

[25]  Daniel Riedel,et al.  Deterministic enhancement of coherent photon generation from a nitrogen-vacancy center in ultrapure diamond , 2017, 1703.00815.

[26]  Alexander Zaitsev,et al.  Creation and nature of optical centres in diamond for single-photon emission—overview and critical remarks , 2011 .

[27]  Stefano de Gironcoli,et al.  Advanced capabilities for materials modelling with Quantum ESPRESSO , 2017, Journal of physics. Condensed matter : an Institute of Physics journal.

[28]  N. Manson,et al.  Optimum photoluminescence excitation and recharging cycle of single nitrogen-vacancy centers in ultrapure diamond. , 2012, Physical review letters.

[29]  J. Wrachtrup,et al.  Photochromism in single nitrogen-vacancy defect in diamond , 2005, cond-mat/0508323.

[30]  N. Kalb,et al.  One-second coherence for a single electron spin coupled to a multi-qubit nuclear-spin environment , 2018, Nature Communications.

[31]  H. Weinfurter,et al.  Single photon emission from SiV centres in diamond produced by ion implantation , 2006 .

[32]  M. Markham,et al.  Coherent optical transitions in implanted nitrogen vacancy centers. , 2014, Nano letters.

[33]  Clark,et al.  Silicon defects in diamond. , 1995, Physical review. B, Condensed matter.

[34]  Neil B. Manson,et al.  The nitrogen-vacancy colour centre in diamond , 2013, 1302.3288.

[35]  P. Olivero,et al.  Single-Photon Emitters in Lead-Implanted Single-Crystal Diamond , 2018, ACS Photonics.

[36]  F. Jelezko,et al.  Tin-Vacancy Quantum Emitters in Diamond. , 2017, Physical review letters.

[37]  M. Markham,et al.  Heralded entanglement between solid-state qubits separated by three metres , 2012, Nature.

[38]  D. Hamann Optimized norm-conserving Vanderbilt pseudopotentials , 2013, 1306.4707.

[39]  F. Jelezko,et al.  Photo-induced ionization dynamics of the nitrogen vacancy defect in diamond investigated by single-shot charge state detection , 2012, 1209.0268.

[40]  Dirk Englund,et al.  Coherent spin control of a nanocavity-enhanced qubit in diamond , 2014, Nature Communications.

[41]  P. C. Humphreys,et al.  Entanglement distillation between solid-state quantum network nodes , 2017, Science.

[42]  J Wrachtrup,et al.  Optically controlled switching of the charge state of a single nitrogen-vacancy center in diamond at cryogenic temperatures. , 2013, Physical review letters.

[43]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[44]  Christian Hepp,et al.  Electronic structure of the silicon vacancy color center in diamond. , 2013, Physical review letters.

[45]  L. Jiang,et al.  Quantum entanglement between an optical photon and a solid-state spin qubit , 2010, Nature.