A crystal plasticity model that incorporates stresses and strains due to slip gradients

Abstract This work is concerned with incorporating the kinematic and stress effects of excess dislocations in a constitutive model for the elastoplastic behavior of crystalline materials. The foundation of the model is a three term multiplicative decomposition of the deformation gradient in which the two classical terms of plastic and elastic deformation are included along with an additional term for long range strain due to the collective effects of excess dislocations. The long range strain is obtained from an assumed density of Volterra edge dislocations and is directly related to gradients in slip. A new material parameter emerges which is the size the region about a continuum point that contributes to long range strains. Using Hookean elasticity, the stress at a point is linearly related to the sum of the elastic plus the long range strain fields. However, the driving force for slip is postulated to be due only to the elastic stress so that the long range stress is a back stress in the constitutive relationship for plastic deformation. A consistent balance of the total deformation rate with the three proposed mechanisms of deformation leads to a set of differential equations that can be solved for the elastic stress, rotation and pressure which then implicitly defines the material state and equilibrium stress. Results from the simulation of a tapered tensile specimen demonstrate that the constitutive model exhibits isotropic and kinematic type hardening effects as well as changes in the pattern of plastic deformation and necking when compared to a material without slip gradient effects.

[1]  H. Zbib,et al.  On the role of strain gradients in adiabatic shear banding , 1995 .

[2]  C. Teodosiu,et al.  A finite theory of the elastoviscoplasticity of single crystals , 1976 .

[3]  Amit Acharya,et al.  Grain-size effect in viscoplastic polycrystals at moderate strains , 2000 .

[4]  W. Soboyejo,et al.  Nanoindentation study of plasticity length scale effects in LIGA Ni microelectromechanical systems structures , 2003 .

[5]  D. Clarke,et al.  Size dependent hardness of silver single crystals , 1995 .

[6]  A. Menzel,et al.  A note on material forces in finite inelasticity , 2005 .

[7]  E. Kröner,et al.  Allgemeine Kontinuumstheorie der Versetzungen und Eigenspannungen , 1959 .

[8]  David Taylor,et al.  Geometrical effects in fatigue: a unifying theoretical model , 1999 .

[9]  Paul Steinmann,et al.  Views on multiplicative elastoplasticity and the continuum theory of dislocations , 1996 .

[10]  Amit Acharya,et al.  Lattice incompatibility and a gradient theory of crystal plasticity , 2000 .

[11]  E. Kroener Continuum Theory of Dislocation and Self-Stresses , 1971 .

[12]  Julia R. Weertman,et al.  Elementary Dislocation Theory , 1992 .

[13]  Norman A. Fleck,et al.  A phenomenological theory for strain gradient effects in plasticity , 1993 .

[14]  James Casey,et al.  Approximate kinematical relations in plasticity , 1985 .

[15]  H. Stumpf,et al.  Nonlinear continuum theory of dislocations , 1996 .

[16]  M. Ashby,et al.  Strain gradient plasticity: Theory and experiment , 1994 .

[17]  E. B. Marin,et al.  On modelling the elasto-viscoplastic response of metals using polycrystal plasticity , 1998 .

[18]  Ulf Engel,et al.  Microforming—from basic research to its realization , 2002 .

[19]  Amit Acharya,et al.  On Non-Local Flow Theories that Preserve the Classical Structure of Incremental Boundary Value Problems , 1996 .

[20]  M. Ashby The deformation of plastically non-homogeneous materials , 1970 .

[21]  E. Hall,et al.  The Deformation and Ageing of Mild Steel: III Discussion of Results , 1951 .

[22]  John W. Hutchinson,et al.  The mechanics of size-dependent indentation , 1998 .

[23]  William D. Nix,et al.  The Role of Indentation Depth on the Measured Hardness of Materials , 1993 .

[24]  Peter Gudmundson,et al.  A unified treatment of strain gradient plasticity , 2004 .

[25]  Huajian Gao,et al.  Indentation size effects in crystalline materials: A law for strain gradient plasticity , 1998 .

[26]  M. Atkinson Further analysis of the size effect in indentation hardness tests of some metals , 1995 .

[27]  Chung-Souk Han,et al.  Mechanism-based strain gradient crystal plasticity—I. Theory , 2005 .

[28]  L. M. Brown,et al.  The work-hardening of copper-silica v. equilibrium plastic relaxation by secondary dislocations , 1976 .

[29]  J. Willis,et al.  Second-order effects of dislocations in anisotropic crystals , 1967 .

[30]  Morton E. Gurtin,et al.  A gradient theory of single-crystal viscoplasticity that accounts for geometrically necessary dislocations , 2002 .

[31]  Amit Acharya,et al.  A stress-gradient based criterion for dislocation nucleation in crystals , 2004 .

[32]  Hans Muhlhaus,et al.  A variational principle for gradient plasticity , 1991 .

[33]  Bernard D. Coleman,et al.  On shear bands in ductile materials , 1985 .

[34]  M. Ristinmaa,et al.  Deformation gradient based kinematic hardening model , 2005 .

[35]  Nicolas Triantafyllidis,et al.  A gradient approach to localization of deformation. I. Hyperelastic materials , 1986 .

[36]  W. Soboyejo,et al.  An investigation of the effects of thickness on mechanical properties of LIGA nickel MEMS structures , 2003 .

[37]  M. Ashby,et al.  Micro-hardness of annealed and work-hardened copper polycrystals , 1996 .

[38]  C. Hartley A method for linking thermally activated dislocation mechanisms of yielding with continuum plasticity theory , 2003 .

[39]  R. Barabash,et al.  X-ray scattering by crystals with local lattice rotation fields , 1999 .

[40]  Mgd Marc Geers,et al.  Non-local crystal plasticity model with intrinsic SSD and GND effects , 2004 .

[41]  G. Voyiadjis,et al.  Analytical and experimental determination of the material intrinsic length scale of strain gradient plasticity theory from micro- and nano-indentation experiments , 2004 .

[42]  P. Haasen,et al.  A new mechanism of work hardening in the late stages of large strain plastic flow in F.C.C. and diamond cubic crystals , 1993 .

[43]  P. R. Dawson,et al.  A viscoplastic formulation with elasticity for transient metal forming , 1988 .

[44]  E. H. Lee,et al.  Finite‐Strain Elastic—Plastic Theory with Application to Plane‐Wave Analysis , 1967 .

[45]  Alexander Lion,et al.  Constitutive modelling in finite thermoviscoplasticity: a physical approach based on nonlinear rheological models , 2000 .

[46]  Paul Steinmann,et al.  A framework for multiplicative elastoplasticity with kinematic hardening coupled to anisotropic damage , 2005 .

[47]  K. Hwang,et al.  Mode I and Mode II Plane-Stress Near-Tip Fields for Cracks in Materials with Strain-Gradient Effects , 1997 .

[48]  Huajian Gao,et al.  The flow theory of mechanism-based strain gradient plasticity , 2003 .

[49]  D. McDowell,et al.  A Multiscale Gradient Theory for Single Crystalline Elastoviscoplasticity , 2004 .

[50]  En-Jui Lee Elastic-Plastic Deformation at Finite Strains , 1969 .

[51]  J. Hutchinson,et al.  STEADY-STATE CRACK GROWTH AND WORK OF FRACTURE FOR SOLIDS CHARACTERIZED BY STRAIN GRADIENT PLASTICITY , 1997 .

[52]  Michael Zaiser,et al.  Spatial Correlations and Higher-Order Gradient Terms in a Continuum Description of Dislocation Dynamics , 2003 .

[53]  Vito Volterra,et al.  Sur l'équilibre des corps élastiques multiplement connexes , 1907 .

[54]  H. Hahn,et al.  A dislocation theory of plasticity , 1973 .

[55]  Amit Acharya,et al.  A model of crystal plasticity based on the theory of continuously distributed dislocations , 2001 .

[56]  R. Asaro,et al.  Micromechanics of Crystals and Polycrystals , 1983 .

[57]  Georges Cailletaud,et al.  Cosserat modelling of size effects in the mechanical behaviour of polycrystals and multi-phase materials , 2000 .

[58]  M. Meyers,et al.  Analytical and computational description of effect of grain size on yield stress of metals , 2001 .

[59]  D. Parks,et al.  Crystal plasticity model with enhanced hardening by geometrically necessary dislocation accumulation , 2002 .

[60]  Amit Acharya,et al.  Constitutive analysis of finite deformation field dislocation mechanics , 2004 .

[61]  David L. McDowell,et al.  A multiscale multiplicative decomposition for elastoplasticity of polycrystals , 2003 .

[62]  Georges Cailletaud,et al.  A Cosserat theory for elastoviscoplastic single crystals at finite deformation , 1997 .

[63]  T. Mura Periodic distributions of dislocations , 1964, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[64]  Matti Ristinmaa,et al.  Kinematic hardening in large strain plasticity , 2003 .

[65]  E. Aifantis On the role of gradients in the localization of deformation and fracture , 1992 .

[66]  Huajian Gao,et al.  A conventional theory of mechanism-based strain gradient plasticity , 2004 .

[67]  E. Giessen,et al.  A comparison of a statistical-mechanics based plasticity model with discrete dislocation plasticity calculations , 2004 .

[68]  H. Stumpf,et al.  A MODEL OF ELASTOPLASTIC BODIES WITH CONTINUOUSLY DISTRIBUTED DISLOCATIONS , 1996 .

[69]  Morton E. Gurtin,et al.  On the plasticity of single crystals: free energy, microforces, plastic-strain gradients , 2000 .

[70]  David L. McDowell,et al.  Modeling Dislocations and Disclinations With Finite Micropolar Elastoplasticity , 2006 .

[71]  K. Rajagopal,et al.  On the Form for the Plastic Velocity Gradient Lp in Crystal Plasticity , 2001 .

[72]  David L. McDowell,et al.  Polycrystal constraint and grain subdivision , 1998 .

[73]  T. Ungár,et al.  Asymmetric X-ray Line Broadening of Plastically Deformed Crystals. I. Theory , 1988 .

[74]  Huajian Gao,et al.  Mechanism-based strain gradient plasticity— I. Theory , 1999 .

[75]  Vassilis P. Panoskaltsis,et al.  INVARIANT FORMULATION OF A GRADIENT DEPENDENT MULTIAXIAL HIGH-CYCLE FATIGUE CRITERION , 1996 .

[76]  Amit Acharya Driving forces and boundary conditions in continuum dislocation mechanics , 2003, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[77]  Toshio Mura,et al.  Continuous distribution of moving dislocations , 1963 .

[78]  Wenge Yang,et al.  White microbeam diffraction from distorted crystals , 2001 .

[79]  N. Fleck,et al.  Strain gradient plasticity , 1997 .

[80]  Anthony G. Evans,et al.  A microbend test method for measuring the plasticity length scale , 1998 .