Integrated Decision Making for Planning and control of Distributed manufacturing Enterprises using Dynamic-Data-Driven adaptive Multi-Scale simulations (DDDAMS)

Discrete-event simulation has become one of the mos t widely used analysis tools for large-scale, complex and dynamic systems such a s supply chains as it can take randomness into account and address very detailed m odels. However, there are major challenges that are faced in simulating such system s, especially when they are used to support short-term decisions ( e.g., operational decisions or maintenance and scheduli ng decisions considered in this research). First, a d et iled simulation requires significant amounts of computation time. Second, given the eno rmous amount of dynamicallychanging data that exists in the system, informatio n needs to be updated wisely in the model in order to prevent unnecessary usage of comp uting and networking resources. Third, there is a lack of methods allowing dynamic data updates during the simulation execution. Overall, in a simulation-based planning and control framework, timely monitoring, analysis, and control is important not t disrupt a dynamically changing system. To meet this temporal requirement and addr ess the above mentioned challenges, a Dynamic-Data-Driven Adaptive Multi-Scale Simulati on (DDDAMS) paradigm is proposed to adaptively adjust the fidelity of a sim ulation model against available computational resources by incorporating dynamic da ta into the executing model, which then steers the measurement process for selective d ata update. To the best of our knowledge, the proposed DDDAMS methodology is one o f the first efforts to present a coherent integrated decision making framework for t imely planning and control of distributed manufacturing enterprises.

[1]  Leon F. McGinnis,et al.  Optimistic-Conservative Synchronization in Distributed Factory Simulation , 2006, Proceedings of the 2006 Winter Simulation Conference.

[2]  Seungho Lee,et al.  Fully dynamic epoch time synchronisation method for distributed supply chain simulation , 2008, Int. J. Comput. Appl. Technol..

[3]  Donald J. Wheeler,et al.  Understanding Statistical Process Control , 1986 .

[4]  Levent Özbek,et al.  Employing the extended Kalman filter in measuring the output gap , 2005 .

[5]  Jun S. Liu,et al.  Sequential importance sampling for , 1999 .

[6]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[7]  Siem Jan Koopman,et al.  An Introduction to State Space Time Series Analysis , 2007 .

[8]  D. Lambert,et al.  Supply Chain Management: Implementation Issues and Research Opportunities , 1998 .

[9]  Gautam Mitra,et al.  Computational solution of capacity planning models under uncertainty , 2000, Parallel Comput..

[10]  Frederica Darema,et al.  Dynamic Data Driven Applications Systems: A New Paradigm for Application Simulations and Measurements , 2004, International Conference on Computational Science.

[11]  Richard A. Wysk,et al.  An application of discrete-event simulation to on-line control and scheduling in flexible manufacturing , 1989 .

[12]  N. Shephard,et al.  BAYESIAN INFERENCE BASED ONLY ON SIMULATED LIKELIHOOD: PARTICLE FILTER ANALYSIS OF DYNAMIC ECONOMIC MODELS , 2011, Econometric Theory.

[13]  Ke Wang,et al.  Evaluate simulation design alternatives for large scale manufacturing systems , 2005, ISSM 2005, IEEE International Symposium on Semiconductor Manufacturing, 2005..

[14]  Benjamin Van Roy,et al.  Approximate Dynamic Programming via Linear Programming , 2001, NIPS.

[15]  Young-Jun Son,et al.  A simulation-based approach for dynamic process management at web service platforms , 2005, Comput. Ind. Eng..

[16]  Akira Satoh,et al.  Clock synchronization algorithm for parallel road-traffic simulation system in a wide area , 1999 .

[17]  Jay H. Lee,et al.  Approximate dynamic programming: Application to process supply chain management , 2006 .

[18]  Nurcin Celik,et al.  Automatic Partitioning of Large Scale Simulation in Grid Computing for Run Time Reduction , 2010, Int. J. Oper. Res. Inf. Syst..

[19]  Simon J. Godsill,et al.  On sequential Monte Carlo sampling methods for Bayesian filtering , 2000, Stat. Comput..

[20]  Seyed Hossein Hosseini,et al.  Traveling token for dynamic load balancing , 2004, Third IEEE International Symposium on Network Computing and Applications, 2004. (NCA 2004). Proceedings..

[21]  Tomás Martínez-Marín,et al.  Introduction of a grid-based filter approach for InSAR phase filtering and unwrapping , 2007, 2007 IEEE International Geoscience and Remote Sensing Symposium.

[22]  Wei Zhao,et al.  A Note on Dynamic Data Driven Wildfire Modeling , 2004, International Conference on Computational Science.

[23]  David Lorge Parnas,et al.  Review of David L. Parnas' "Designing Software for Ease of Extension and Contraction" , 2004 .

[24]  Olivier Pourret,et al.  Bayesian networks : a practical guide to applications , 2008 .

[25]  N. Gordon,et al.  Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .

[26]  F. Hank Grant,et al.  An application of discrete-event simulation to an outpatient healthcare clinic with batch arrivals , 2011, Proceedings of the 2011 Winter Simulation Conference (WSC).

[27]  G. Goodwin,et al.  Adaptive control of time-varying linear systems , 1988 .

[28]  Brian J. Wagner,et al.  Sampling Design Methods For Groundwater Modeling Under Uncertainty , 1995 .

[29]  Daniel E. Rivera,et al.  Simulation-based optimization of process control policies for inventory management in supply chains , 2006, Autom..

[30]  M. Naim,et al.  Supply chain dynamics , 1991 .

[31]  Pierre Siron,et al.  Partitioning and Mapping Communication Graphs on a Modular Reconfigurable Parallel Architecture , 1992, CONPAR.

[32]  Yun Bae Kim,et al.  A Discrete-Continuous Combined Modeling Approach for Supply Chain Simulation , 2002, Simul..

[33]  Seungho Lee,et al.  DDDAS-based multi-fidelity simulation framework for supply chain systems , 2010 .

[34]  Jan Ola Strandhagen,et al.  Global supply chain control systems: a conceptual framework for the global control centre , 2009 .

[35]  Hau L. Lee,et al.  Strategic Analysis of Integrated Production-Distribution Systems: Models and Methods , 1988, Oper. Res..

[36]  Terence A. Oliva,et al.  The Role of the Internet in Supply Chain Management , 2000 .

[37]  Arnaud Doucet,et al.  A survey of convergence results on particle filtering methods for practitioners , 2002, IEEE Trans. Signal Process..

[38]  John Ladbrook,et al.  GRIDS-SCF: An Infrastructure for Distributed Supply Chain Simulation , 2002, Simul..

[39]  Durk-Jouke van der Zee,et al.  A Modeling Framework for Supply Chain Simulation: Opportunities for Improved Decision Making , 2005, Decis. Sci..

[40]  Paul F. Reynolds,et al.  Requirements for DDDAS Flexible Point Support , 2006, Proceedings of the 2006 Winter Simulation Conference.

[41]  J. Venkateswaran,et al.  Hybrid system dynamic—discrete event simulation-based architecture for hierarchical production planning , 2005 .

[42]  A. V. D. Ven,et al.  Measuring And Assessing Organizations , 1980 .

[43]  W. C. Benton,et al.  Supply chain practice and information sharing , 2007 .

[44]  Ronald L. Rivest,et al.  Introduction to Algorithms , 1990 .

[45]  Pavlos Konas Parallel architectural simulations on shared-memory multiprocessors , 1994 .

[46]  Salvatore Miranda,et al.  Supply chain distributed simulation: An efficient architecture for multi-model synchronization , 2007, Simul. Model. Pract. Theory.

[47]  Baoxin Li,et al.  Adaptive Rao–Blackwellized Particle Filter and Its Evaluation for Tracking in Surveillance , 2007, IEEE Transactions on Image Processing.

[48]  Ralph Linsker,et al.  Neural network learning of optimal Kalman prediction and control , 2008, Neural Networks.

[49]  Mohsen Bahmani-Oskooee *,et al.  Kalman filter approach to estimate the demand for international reserves , 2004 .

[50]  Jeffrey S. Smith,et al.  Simulation system for real-time planning, scheduling, and control , 1996, Proceedings Winter Simulation Conference.

[51]  Sridhar Seshadri,et al.  Information Sharing in a Supply Chain Under ARMA Demand , 2005, Manag. Sci..

[52]  Laoucine Kerbache,et al.  Queueing networks and the topological design of supply chain systems , 2004 .

[53]  Paolo Toth,et al.  Knapsack Problems: Algorithms and Computer Implementations , 1990 .

[54]  Charles R. McLean,et al.  The IMS MISSION architecture for distributed manufacturing simulation , 2000, 2000 Winter Simulation Conference Proceedings (Cat. No.00CH37165).

[55]  B. Beamon Supply chain design and analysis:: Models and methods , 1998 .

[56]  M. Ristic,et al.  Fine planning for supply chains in semiconductor manufacture , 2000 .

[57]  A. Doucet,et al.  Sequential Monte Carlo methods for multitarget filtering with random finite sets , 2005, IEEE Transactions on Aerospace and Electronic Systems.

[58]  Thong Ngee Goh,et al.  Some effective control chart procedures for reliability monitoring , 2002, Reliab. Eng. Syst. Saf..

[59]  Jun S. Liu,et al.  Sequential Imputations and Bayesian Missing Data Problems , 1994 .

[60]  Yingmei Cheng,et al.  Exchange rate risk premiums , 1993 .

[61]  Hassan Rajaei,et al.  Parallel simulation using conservative time windows , 1992, WSC '92.

[62]  Subhash Challa,et al.  Joint target tracking and classification using radar and ESM sensors , 2001 .

[63]  J. Venkateswaran,et al.  Impact of modelling approximations in supply chain analysis – an experimental study , 2004 .

[64]  Chun-Hung Chen,et al.  New development of optimal computing budget allocation for discrete event simulation , 1997, WSC '97.

[65]  Stephen F. Smith,et al.  Modeling the Dynamics of Supply Chains , 1994 .

[66]  YOUNG JUN SON,et al.  Simulation-based shop floor control: formal model, model generation and control interface , 2003 .

[67]  C. Richard Cassady,et al.  Combining preventive maintenance and statistical process control: a preliminary investigation , 2000 .

[68]  Rudolph van der Merwe,et al.  The Unscented Kalman Filter , 2002 .

[69]  Ronald L. Rivest,et al.  Introduction to Algorithms, Second Edition , 2001 .

[70]  C. Pantelides,et al.  Design of Multi-echelon Supply Chain Networks under Demand Uncertainty , 2001 .

[71]  Young-Jun Son,et al.  Design and development of a prototype distributed simulation for evaluation of supply chains , 2004 .

[72]  Hau L. Lee,et al.  Material Management in Decentralized Supply Chains , 1993, Oper. Res..

[73]  G. Oehlert Faster Adaptive Importance Sampling in Low Dimensions , 1998 .

[74]  Yalchin Efendiev,et al.  A Note on Data-Driven Contaminant Simulation , 2004, International Conference on Computational Science.

[75]  Albert T. Jones,et al.  New manufacturing modeling methodology: a hybrid approach to manufacturing enterprise simulation , 2003, WSC '03.

[76]  C. Harland Supply Chain Management: Relationships, Chains and Networks , 1996 .

[77]  G. Kitagawa Monte Carlo Filter and Smoother for Non-Gaussian Nonlinear State Space Models , 1996 .

[78]  David M. Nicol,et al.  Learning not to share , 2001, Workshop on Parallel and Distributed Simulation.

[79]  Dobrila Petrovic,et al.  Simulation of supply chain behaviour and performance in an uncertain environment , 2001 .

[80]  David Madigan,et al.  A Sequential Monte Carlo Method for Bayesian Analysis of Massive Datasets , 2003, Data Mining and Knowledge Discovery.

[81]  A. Jazwinski Stochastic Processes and Filtering Theory , 1970 .

[82]  C. A. Alvarenga,et al.  A NEW TAKE ON SUPPLY CHAIN EVENT MANAGEMENT. , 2003 .

[83]  Richard A. Wysk,et al.  Development and benchmarking of an epoch time synchronization method for distributed simulation , 2005 .

[84]  Bjarne A. Foss,et al.  Applying the unscented Kalman filter for nonlinear state estimation , 2008 .

[85]  Takashi Matsumoto,et al.  A Sequential Monte Carlo Method for Bayesian Face Recognition , 2006, SSPR/SPR.

[86]  Benoît Montreuil,et al.  Toward a methodological framework for agent-based modelling and simulation of supply chains in a mass customization context , 2007, Simul. Model. Pract. Theory.

[87]  Martin Spengler Sequential Monte Carlo Methods for Multi-Object Tracking , 2003 .

[88]  Jeffrey S. Smith,et al.  Discrete event simulation for shop floor control , 1994, Proceedings of Winter Simulation Conference.

[89]  Karen Spens,et al.  Developing a Framework for Supply Chain Management , 2002 .

[90]  Roberto Casarin,et al.  Matrix-State Particle Filter for Wishart Stochastic Volatility Processes , 2007 .

[91]  Jun S. Liu,et al.  Sequential importance sampling for nonparametric Bayes models: The next generation , 1999 .

[92]  Branko Ristic,et al.  Beyond the Kalman Filter: Particle Filters for Tracking Applications , 2004 .

[93]  Teruaki Ito,et al.  Agent-based material handling and inventory planning in warehouse , 2002, J. Intell. Manuf..

[94]  J. C. Koop,et al.  On upper limits to the difference in bias between two ratio estimates , 1962 .

[95]  Terry P. Harrison,et al.  A multi-formalism architecture for agent-based, order-centric supply chain simulation , 2007, Simul. Model. Pract. Theory.

[96]  Denis Royston Towill,et al.  The application of filter theory to the study of supply chain dynamics , 1994 .

[97]  Nils Christophersen,et al.  Monte Carlo filters for non-linear state estimation , 2001, Autom..

[98]  James R. Evans,et al.  Blending OR/MS, Judgment, and GIS: Restructuring P&G's Supply Chain , 1997 .

[99]  Frank Y. Chen,et al.  Quantifying the Bullwhip Effect in a Simple Supply Chain: The Impact of Forecasting, Lead Times, and Information.: The Impact of Forecasting, Lead Times, and Information. , 2000 .

[100]  J. Frederick Klingener Programming combined discrete-continuous simulation models for performance , 1996, Winter Simulation Conference.

[101]  Jc Koop A Note on Koop's Approach for Finding the Bias of the Ratio Estimate: Comment: , 1973 .

[102]  H.K. Ekenel,et al.  Kalman filters for audio-video source localization , 2005, IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, 2005..

[103]  Benita M. Beamon,et al.  Measuring supply chain performance , 1999 .

[104]  A. M. Geoffrion,et al.  Multicommodity Distribution System Design by Benders Decomposition , 1974 .

[105]  Nirvikar Singh,et al.  Exchange rate risk premiums , 2001 .

[106]  Richard A. Wysk,et al.  Automatic simulation model generation for simulation-based, real-time shop floor control , 2001, Comput. Ind..

[107]  Lyudmila Mihaylova,et al.  Joint target tracking and classification with particle filtering and mixture Kalman filtering using kinematic radar information , 2006, Digit. Signal Process..

[108]  Hau L. Lee,et al.  Information sharing in a supply chain , 2000, Int. J. Manuf. Technol. Manag..

[109]  Jean-Claude Hennet,et al.  Supply chain coordination: A game-theory approach , 2008, Eng. Appl. Artif. Intell..

[110]  David R. Jefferson,et al.  Virtual time , 1985, ICPP.

[111]  Xin Liu,et al.  Traffic-based Load Balance for Scalable Network Emulation , 2003, ACM/IEEE SC 2003 Conference (SC'03).

[112]  Kyu Ho Park,et al.  Hierarchical partitioning algorithm for optimistic distributed simulation of DEVS models , 1998, J. Syst. Archit..

[113]  Y. Narahari,et al.  Production, Manufacturing and Logistics Object oriented modeling and decision support for supply chains , 2004 .

[114]  Konstantin Andreev,et al.  Balanced Graph Partitioning , 2004, SPAA '04.

[115]  Sigrún Andradóttir,et al.  Applying Bayesian ideas in simulation , 2000, Simul. Pract. Theory.

[116]  Stephen M. Disney,et al.  The value of coordination in a two-echelon supply chain , 2008 .

[117]  Azzedine Boukerche,et al.  An Adaptive Partitioning Algorithm for Distributed Discrete Event Simulation Systems , 2002, J. Parallel Distributed Comput..

[118]  H.F. Durrant-Whyte,et al.  A new approach for filtering nonlinear systems , 1995, Proceedings of 1995 American Control Conference - ACC'95.

[119]  Sita Bhaskaran Simulation Analysis of a Manufacturing Supply Chain , 1998 .

[120]  Jack Dongarra,et al.  visPerf: Monitoring Tool for Grid Computing , 2003, International Conference on Computational Science.

[121]  Subhashish Samaddar,et al.  Production, Manufacturing and Logistics Inter-organizational information sharing: The role of supply network configuration and partner goal congruence , 2006 .

[122]  Wolfram Burgard,et al.  Probabilistic state estimation of dynamic objects with a moving mobile robot , 2001, Robotics Auton. Syst..

[123]  Sophie D'Amours,et al.  Multi-behavior agent model for planning in supply chains: An application to the lumber industry , 2008 .

[124]  Stephen E. Chick,et al.  Bayesian Ideas and Discrete Event Simulation: Why, What and How , 2006, Proceedings of the 2006 Winter Simulation Conference.

[125]  Petros A. Ioannou,et al.  Adaptive control of linear time varying systems , 1996, Proceedings of 35th IEEE Conference on Decision and Control.

[126]  Judith S. Dahmann,et al.  Creating Computer Simulation Systems: An Introduction to the High Level Architecture , 1999 .

[127]  S. Niculescu Delay Effects on Stability: A Robust Control Approach , 2001 .

[128]  Anoop Gupta,et al.  Parallel logic simulation: an evaluation of centralized-time and distributed-time algorithms , 1992 .

[129]  Simon J. Godsill,et al.  Statistical reconstruction and analysis of autoregressive signals in impulsive noise using the Gibbs sampler , 1998, IEEE Trans. Speech Audio Process..

[130]  Simon J. Godsill,et al.  Robust reconstruction and analysis of autoregressive signals in impulsive noise signals using Gibbs sampler , 1995 .

[131]  Cedric Nishan Canagarajah,et al.  Sequential Monte Carlo tracking by fusing multiple cues in video sequences , 2007, Image Vis. Comput..

[132]  Vineet Padmanabhan,et al.  Comments on "Information Distortion in a Supply Chain: The Bullwhip Effect" , 1997, Manag. Sci..

[133]  Yanfeng Ouyang,et al.  The effect of information sharing on supply chain stability and the bullwhip effect , 2007, Eur. J. Oper. Res..

[134]  Francesco Longo,et al.  An advanced supply chain management tool based on modeling and simulation , 2008, Comput. Ind. Eng..

[135]  Victoria C. P. Chen,et al.  Performance analysis of conjoined supply chains , 2001 .

[136]  Jeffrey S. Smith,et al.  Simulation-based shop floor control , 2002 .

[137]  Jun S. Liu,et al.  Metropolized independent sampling with comparisons to rejection sampling and importance sampling , 1996, Stat. Comput..

[138]  Loo Hay Lee,et al.  Efficient Simulation Budget Allocation for Selecting an Optimal Subset , 2008, INFORMS J. Comput..

[139]  Baoxin Li,et al.  Rao-Blackwellised particle filter with adaptive system noise and its evaluation for tracking in surveillance , 2006, Electronic Imaging.

[140]  Hans-Henrik Hvolby,et al.  Modelling Supply Chains , 2000 .

[141]  M. West,et al.  Bayesian forecasting and dynamic models , 1989 .

[142]  Andrew S. Grimshaw,et al.  Network partitioning of data parallel computations , 1994, Proceedings of 3rd IEEE International Symposium on High Performance Distributed Computing.

[143]  Finn V. Jensen,et al.  Bayesian Networks and Decision Graphs , 2001, Statistics for Engineering and Information Science.

[144]  F. Vardanega,et al.  A generic rollback manager for optimistic HLA simulations , 2000, Proceedings Fourth IEEE International Workshop on Distributed Simulation and Real-Time Applications (DS-RT 2000).

[145]  Mohamed Mohamed Naim,et al.  Smoothing Supply Chain Dynamics , 1991 .