Towards an ultra efficient kinetic scheme. Part II: The high order case

In a recent paper we presented a new ultra efficient numerical method for solving kinetic equations of the Boltzmann type (Dimarco and Loubere, 2013) 17]. The key idea, on which the method relies, is to solve the collision part on a grid and then to solve exactly the transport part by following the characteristics backward in time. On the contrary to classical semi-Lagrangian methods one does not need to reconstruct the distribution function at each time step. This allows to tremendously reduce the computational cost and to perform efficient numerical simulations of kinetic equations up to the six-dimensional case without parallelization. However, the main drawback of the method developed was the loss of spatial accuracy close to the fluid limit. In the present work, we modify the scheme in such a way that it is able to preserve the high order spatial accuracy for extremely rarefied and fluid regimes. In particular, in the fluid limit, the method automatically degenerates into a high order method for the compressible Euler equations. Numerical examples are presented which validate the method, show the higher accuracy with respect to the previous approach and measure its efficiency with respect to well-known schemes (Direct Simulation Monte Carlo, Finite Volume, MUSCL, WENO).

[1]  Jonathan M. Burt,et al.  A low diffusion particle method for simulating compressible inviscid flows , 2007, J. Comput. Phys..

[2]  M. Shoucri,et al.  Numerical integration of the Vlasov equation , 1974 .

[3]  Chi-Wang Shu Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws , 1998 .

[4]  M. S. Ivanov,et al.  Parallelization of algorithms for solving the Boltzmann equation for GPU‐based computations , 2011 .

[5]  G. Strang On the Construction and Comparison of Difference Schemes , 1968 .

[6]  Kenichi Nanbu,et al.  Direct simulation scheme derived from the Boltzmann equation. I - Monocomponent gases. II - Multicom , 1980 .

[7]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[8]  R. Caflisch The fluid dynamic limit of the nonlinear boltzmann equation , 1980 .

[9]  Lorenzo Pareschi,et al.  Convolutive decomposition and fast summation methods for discrete-velocity approximations of the Boltzmann equation , 2012, 1201.3986.

[10]  Tai-Ping Liu,et al.  Boltzmann Equation: Micro-Macro Decompositions and Positivity of Shock Profiles , 2004 .

[11]  Vladimir Titarev,et al.  Efficient Deterministic Modelling of Three-Dimensional Rarefied Gas Flows , 2012 .

[12]  Andrew J. Christlieb,et al.  Arbitrarily high order Convected Scheme solution of the Vlasov-Poisson system , 2013, J. Comput. Phys..

[13]  E Weinan,et al.  The Heterognous Multiscale Methods , 2003 .

[14]  Yaman Güçlü,et al.  A high order cell-centered semi-Lagrangian scheme for multi-dimensional kinetic simulations of neutral gas flows , 2012, J. Comput. Phys..

[15]  Luc Mieussens,et al.  Local discrete velocity grids for deterministic rarefied flow simulations , 2014, J. Comput. Phys..

[16]  Stéphane Clain,et al.  Improved detection criteria for the multi-dimensional optimal order detection (MOOD) on unstructured meshes with very high-order polynomials , 2012 .

[17]  Luc Mieussens,et al.  DISCRETE VELOCITY MODEL AND IMPLICIT SCHEME FOR THE BGK EQUATION OF RAREFIED GAS DYNAMICS , 2000 .

[18]  Giacomo Dimarco,et al.  Hybrid Multiscale Methods II. Kinetic Equations , 2008, Multiscale Model. Simul..

[19]  Raphaël Loubère,et al.  Towards an ultra efficient kinetic scheme. Part III: High-performance-computing , 2015, J. Comput. Phys..

[20]  Livio Gibelli,et al.  Direct solution of the Boltzmann equation for a binary mixture on GPUs , 2011 .

[21]  Irene M. Gamba,et al.  High performance computing with a conservative spectral Boltzmann solver , 2012, 1211.0540.

[22]  W. F. Noh Errors for calculations of strong shocks using an artificial viscosity and artificial heat flux , 1985 .

[23]  B. Perthame Second-order Boltzmann schemes for compressible Euler equations in one and two space dimensions , 1992 .

[24]  Lorenzo Pareschi,et al.  Numerical Solution of the Boltzmann Equation I: Spectrally Accurate Approximation of the Collision Operator , 2000, SIAM J. Numer. Anal..

[25]  Giacomo Dimarco,et al.  Numerical methods for kinetic equations* , 2014, Acta Numerica.

[26]  Francesco Salvarani,et al.  GPU-accelerated numerical simulations of the Knudsen gas on time-dependent domains , 2013, Comput. Phys. Commun..

[27]  Eric Sonnendrücker,et al.  Conservative semi-Lagrangian schemes for Vlasov equations , 2010, J. Comput. Phys..

[28]  Lorenzo Pareschi,et al.  Time Relaxed Monte Carlo Methods for the Boltzmann Equation , 2001, SIAM J. Sci. Comput..

[29]  Francis Filbet,et al.  High order numerical methods for the space non-homogeneous Boltzmann equation , 2003 .

[30]  Eric Sonnendrücker,et al.  A forward semi-Lagrangian method for the numerical solution of the Vlasov equation , 2008, Comput. Phys. Commun..

[31]  Kenichi Nanbu,et al.  Direct Simulation Scheme Derived from the Boltzmann Equation. IV. Correlation of Velocity , 1981 .

[32]  Gabriella Puppo,et al.  Implicit–Explicit Schemes for BGK Kinetic Equations , 2007, J. Sci. Comput..

[33]  Christian Rey,et al.  GPU-accelerated real-time visualization and interaction for coupled Fluid Dynamics , 2013 .

[34]  R. LeVeque Numerical methods for conservation laws , 1990 .

[35]  E. Toro Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .

[36]  Jun S. Liu,et al.  Monte Carlo strategies in scientific computing , 2001 .

[37]  S. Mas-Gallic,et al.  A deterministic particle method for the linearized Boltzmann equation , 1987 .

[38]  R. Keppens,et al.  Nonlinear dynamics of Kelvin–Helmholtz unstable magnetized jets: Three-dimensional effects , 1999 .

[39]  Giacomo Dimarco,et al.  Hybrid multiscale methods for hyperbolic problems I. Hyperbolic relaxation problems , 2006 .

[40]  Irene M. Gamba,et al.  Spectral-Lagrangian methods for collisional models of non-equilibrium statistical states , 2009, J. Comput. Phys..

[41]  Andrzej Palczewski,et al.  Existence, Stability, and Convergence of Solutions of Discrete Velocity Models to the Boltzmann Equation , 1998 .

[42]  Raphaël Loubère,et al.  Towards an ultra efficient kinetic scheme. Part I: Basics on the BGK equation , 2012, J. Comput. Phys..

[43]  P. Degond,et al.  The moment‐guided Monte Carlo method , 2009, 0908.0261.

[44]  Livio Gibelli,et al.  Solving the Boltzmann equation on GPUs , 2011, Comput. Phys. Commun..

[45]  Stéphane Clain,et al.  A high-order finite volume method for systems of conservation laws - Multi-dimensional Optimal Order Detection (MOOD) , 2011, J. Comput. Phys..

[46]  Michael Dumbser,et al.  Construction and comparison of parallel implicit kinetic solvers in three spatial dimensions , 2014, J. Comput. Phys..

[47]  Thomas M. M. Homolle,et al.  Low-variance deviational simulation Monte Carlo , 2007 .

[48]  C. Baranger,et al.  Locally refined discrete velocity grids for stationary rarefied flow simulations , 2013, J. Comput. Phys..

[49]  C. Cercignani The Boltzmann equation and its applications , 1988 .

[50]  R. Caflisch Monte Carlo and quasi-Monte Carlo methods , 1998, Acta Numerica.

[51]  Tadeusz Płatkowski,et al.  An acceleration procedure for discrete velocity approximation of the Boltzmann collision operator , 2000 .

[52]  G. Knorr,et al.  The integration of the vlasov equation in configuration space , 1976 .

[53]  Livio Gibelli,et al.  Solving model kinetic equations on GPUs , 2011 .

[54]  Vladimir Titarev,et al.  Implicit numerical method for computing three-dimensional rarefied gas flows on unstructured meshes , 2010 .

[55]  S. Mischler,et al.  About the splitting algorithm for Boltzmann and B , 1996 .

[56]  Thomas M. M. Homolle,et al.  A low-variance deviational simulation Monte Carlo for the Boltzmann equation , 2007, J. Comput. Phys..

[57]  Lorenzo Pareschi,et al.  Hybrid Multiscale Methods for Hyperbolic and Kinetic Problems , 2005 .

[58]  S. Mas-Gallic,et al.  Approximation of the transport equation by a weighted particle method , 1988 .

[59]  P. Degond,et al.  The weighted particle method for convection-diffusion equations. II. The anisotropic case , 1989 .

[60]  Giacomo Dimarco,et al.  Fluid Solver Independent Hybrid Methods for Multiscale Kinetic Equations , 2009, SIAM J. Sci. Comput..

[61]  Yann Brenier,et al.  The multi-water-bag equations for collisionless kinetic modeling , 2009 .

[62]  Jeffrey Haack A hybrid OpenMP and MPI implementation of a conservative spectral method for the Boltzmann equation , 2013 .

[63]  R. Illner,et al.  Discrete Velocity Models of the Boltzmann Equation: A Survey on the Mathematical ASPECTS of the Theory , 1988 .

[64]  D. Pullin,et al.  Direct simulation methods for compressible inviscid ideal-gas flow , 1980 .

[65]  Andrzej Palczewski,et al.  A Consistency Result for a Discrete-Velocity Model of the Boltzmann Equation , 1997 .

[66]  T. Abe Derivation of the Lattice Boltzmann Method by Means of the Discrete Ordinate Method for the Boltzmann Equation , 1997 .

[67]  G. Toscani,et al.  Fast spectral methods for the Fokker-Planck-Landau collision operator , 2000 .

[68]  C. Birdsall,et al.  Plasma Physics via Computer Simulation , 2018 .

[69]  V. V. Aristov,et al.  Unified solver for rarefied and continuum flows with adaptive mesh and algorithm refinement , 2007, J. Comput. Phys..

[70]  H. C. Yee,et al.  Entropy Splitting and Numerical Dissipation , 2000 .

[71]  D. Issautier,et al.  Convergence of a Weighted Particle Method for Solving the Boltzmann (B.G.K.) Equation , 1996 .

[72]  P. Bhatnagar,et al.  A Model for Collision Processes in Gases. I. Small Amplitude Processes in Charged and Neutral One-Component Systems , 1954 .

[73]  Giacomo Dimarco,et al.  The Moment Guided Monte Carlo method for the Boltzmann equation , 2012, 1207.1005.

[74]  P. Bertrand,et al.  Conservative numerical schemes for the Vlasov equation , 2001 .

[75]  Cory D. Hauck,et al.  An asymptotic-preserving semi-Lagrangian algorithm for the time-dependent anisotropic heat transport equation , 2014, J. Comput. Phys..

[76]  Andrzej Palczewski,et al.  On approximation of the Boltzmann equation by discrete velocity models , 1995 .

[77]  Lorenzo Pareschi,et al.  Towards a Hybrid Monte Carlo Method for Rarefied Gas Dynamics , 2004 .