GLD100: The near-global lunar 100 m raster DTM from LROC WAC stereo image data

[1] We derived near-global lunar topography from stereo image data acquired by the Wide-angle Camera (WAC) of the Lunar Reconnaissance Orbiter Camera (LROC) system. From polar orbit tracks, the LROC WAC provides image data with a mean ground resolution at nadir of 75 m/pixel with substantial cross-track stereo overlap. WAC stereo images from the one-year nominal mission and the first months of the science mission phase are combined to produce a near-global digital terrain model (DTM) with a pixel spacing of 100 m, the Global Lunar DTM 100 m, or “GLD100.” It covers 79°S to 79°N latitudes, 98.2% of the entire lunar surface. We compare the GLD100 with results from previous stereo and altimetry-based products, particularly with the Lunar Orbiter Laser Altimeter (LOLA) altimetry, which is the current topographic reference for the Moon. We describe typical characteristics of the GLD100 and, based upon the comparison to the LOLA data set, assess its vertical and lateral resolution and accuracy. We conclude that the introduced first version of the stereo-based GLD100 is a valuable topographic representation of the lunar surface, complementary to the LOLA altimetry data set. Further improvements can be expected from continuative investigations.

[1]  A. C. Cook,et al.  Lunar polar topography derived from Clementine stereoimages , 2000 .

[2]  Jian Guo,et al.  Integration of Chang'E-1 Imagery and Laser Altimeter Data for Precision Lunar Topographic Modeling , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[3]  David E. Smith,et al.  Global surface slopes and roughness of the Moon from the Lunar Orbiter Laser Altimeter , 2011 .

[4]  Mark H. Torrence,et al.  Results from the Lunar Orbiter Laser Altimeter (LOLA): Global, High Resolution Topographic Mapping of the Moon , 2011 .

[5]  A. McEwen,et al.  Lunar Reconnaissance Orbiter Camera (LROC) Instrument Overview , 2010 .

[6]  Jianfeng Cao,et al.  Lunar topographic model CLTM-s01 from Chang’E-1 laser altimeter , 2009 .

[7]  F. Scholten,et al.  The northern hemisphere of asteroid (21) Lutetia—topography and orthoimages from Rosetta OSIRIS NAC image data , 2012 .

[8]  Ralf Jaumann,et al.  High-resolution Digital Terrain Models from Mars Express HRSC Data , 2009 .

[9]  M. Zuber,et al.  Stereo topographic models of Mercury after three MESSENGER flybys , 2011 .

[10]  David E. Smith,et al.  Orbit determination of the Lunar Reconnaissance Orbiter , 2012, Journal of Geodesy.

[11]  Tim R. Colvin,et al.  Lunar coordinates in the regions of the Apollo landers , 2000 .

[12]  J. Oberst,et al.  Lunar Global Shape and Polar Topography Derived from Kaguya-LALT Laser Altimetry , 2009, Science.

[13]  Charles Baker,et al.  Lunar Reconnaissance Orbiter Mission and Spacecraft Design , 2010 .

[14]  Jürgen Oberst,et al.  Non-mare silicic volcanism on the lunar farside at Compton-Belkovich , 2011 .

[15]  David E. Smith,et al.  The Shape and Internal Structure of the Moon from the Clementine Mission , 1994, Science.

[16]  G. Neukum,et al.  Topographic modeling of Phoebe using Cassini images , 2006 .

[17]  M. Davies,et al.  A Unified Lunar Control Network , 1985 .

[18]  David E. Smith,et al.  Initial observations from the Lunar Orbiter Laser Altimeter (LOLA) , 2010 .

[19]  F. Scholten,et al.  Mars Express HRSC Data Processing - Methods and Operational Aspects , 2005 .

[20]  David E. Smith,et al.  The Clementine Mission to the Moon: Scientific Overview , 1994, Science.

[21]  Randolph L. Kirk,et al.  The Unified Lunar Control Network 2005 , 2006 .

[22]  Harald Hiesinger,et al.  Thermophysical Properties of Selected Lunar Study Regions Determined from LROC and Diviner Data , 2011 .

[23]  C. H. Acton,et al.  Ancillary data services of NASA's Navigation and Ancillary Information Facility , 1996 .

[24]  A. Konopliv,et al.  Recent Gravity Models as a Result of the Lunar Prospector Mission , 2001 .

[25]  F. Scholten,et al.  A Search for Degraded Lunar Basins Using the LROC-WAC Digital Terrain Model (GLD100) , 2011 .

[26]  M. Robinson,et al.  LUNAR RECONNAISSANCE ORBITER CAMERA GLOBAL MORPHOLOGICAL MAP OF THE MOON , 2011 .

[27]  David E. Smith,et al.  GLGM‐3: A degree‐150 lunar gravity model from the historical tracking data of NASA Moon orbiters , 2010 .