QUANTALE MODULES: WITH APPLICATIONS TO LOGIC AND IMAGE PROCESSING

We propose a categorical and algebraic study of quantale modules. The results and constructions presented are also applied to abstract algebraic logic and to image processing tasks.

[1]  J. Łoś,et al.  Remarks on sentential logics , 1958 .

[2]  Witold Pedrycz,et al.  A digital watermarking algorithm using image compression method based on fuzzy relational equation , 2002, 2002 IEEE World Congress on Computational Intelligence. 2002 IEEE International Conference on Fuzzy Systems. FUZZ-IEEE'02. Proceedings (Cat. No.02CH37291).

[3]  Jan Łukasiewicz,et al.  On the principle of the excluded middle , 1987 .

[4]  Daniele Mundici,et al.  An Elementary Proof of Chang's Completeness Theorem for the Infinite-valued Calculus of Lukasiewicz , 1997, Stud Logica.

[5]  Salvatore Sessa,et al.  Fuzzy relation equations for coding/decoding processes of images and videos , 2005, Inf. Sci..

[6]  A. Joyal,et al.  An extension of the Galois theory of Grothendieck , 1984 .

[7]  Jan Paseka,et al.  A note on nuclei of quantale modules , 2002 .

[8]  Jonathan S. Golan,et al.  The theory of semirings with applications in mathematics and theoretical computer science , 1992, Pitman monographs and surveys in pure and applied mathematics.

[9]  K. I. Rosenthal Quantales and their applications , 1990 .

[10]  Sergey A. Solovyov,et al.  On the category Q-Mod , 2008 .

[11]  D. Van De Ville,et al.  An overview of classical and fuzzy-classical filters for noise reduction , 2001, 10th IEEE International Conference on Fuzzy Systems. (Cat. No.01CH37297).

[12]  Nikolaos Galatos,et al.  Equivalence of consequence relations: an order-theoretic and categorical perspective , 2009, The Journal of Symbolic Logic.

[13]  Henk J. A. M. Heijmans,et al.  Theoretical Aspects of Gray-Level Morphology , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  Stanley Burris,et al.  A course in universal algebra , 1981, Graduate texts in mathematics.

[15]  Peter Jipsen,et al.  Residuated lattices: An algebraic glimpse at sub-structural logics , 2007 .

[16]  Isar Stubbe Q-MODULES ARE Q-SUPLATTICES , 2008, 0809.4343.

[17]  C. Chang,et al.  A new proof of the completeness of the Łukasiewicz axioms , 1959 .

[18]  Itala M. Loffredo D'Ottaviano,et al.  Conservative translations , 2001, Ann. Pure Appl. Log..

[19]  David Moore,et al.  Current Research in Operational Quantum Logic , 2000 .

[20]  W. F. Ames Fuzzy relation equations and their applications to knowledge engineering , 1990 .

[21]  Henk J. A. M. Heijmans,et al.  Fundamenta Morphologicae Mathematicae , 2000, Fundam. Informaticae.

[22]  Antonio di Nola,et al.  Lukasiewicz transform and its application to compression and reconstruction of digital images , 2007, Inf. Sci..

[23]  R. Wójcicki Theory of Logical Calculi: Basic Theory of Consequence Operations , 1988 .

[24]  Yasufumi Takama,et al.  Image Compression/Reconstruction Based on Various Types of Fuzzy Relational Equations , 2001 .

[25]  Bob Coecke,et al.  Current research in operational quantum logic : algebras, categories, languages , 2000 .

[26]  G. Matheron Random Sets and Integral Geometry , 1976 .

[27]  Witold Pedrycz,et al.  Face recognition using fuzzy Integral and wavelet decomposition method , 2004, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[28]  Willem J. Blok,et al.  Equivalence of Consequence Operations , 2006, Stud Logica.

[29]  Pedro Resende,et al.  Quantales and Observational Semantics , 2000 .

[30]  W. Pedrycz,et al.  Fuzzy Relation Equations and Their Applications to Knowledge Engineering , 1989, Theory and Decision Library.

[31]  Ciro Russo Quantale Modules and their Operators, with Applications , 2010, J. Log. Comput..

[32]  H. Heijmans Morphological image operators , 1994 .

[33]  Ephraim Feig,et al.  Fast algorithms for the discrete cosine transform , 1992, IEEE Trans. Signal Process..

[34]  Pedro Resende,et al.  Sup-lattice 2-forms and quantales ∗ , 2002 .

[35]  Alexej P. Pynko,et al.  Definitional Equivalence and Algebraizability of Generalized Logical Systems , 1999, Ann. Pure Appl. Log..

[36]  G. Gentzen Untersuchungen über das logische Schließen. I , 1935 .

[37]  J. Rosser,et al.  Fragments of many-valued statement calculi , 1958 .

[38]  Jirí Adámek,et al.  Abstract and Concrete Categories - The Joy of Cats , 1990 .

[39]  B. Gerla,et al.  Algebras of Lukasiewicz ’ s Logic and their Semiring , 2009 .

[40]  Pedro Resende,et al.  Étale groupoids and their quantales , 2007 .

[41]  Petr Hájek,et al.  Metamathematics of Fuzzy Logic , 1998, Trends in Logic.

[42]  Ventura Verdú,et al.  On the Algebraization of Some Gentzen Systems , 1993, Fundam. Informaticae.

[43]  E. Turunen Mathematics Behind Fuzzy Logic , 1999 .

[44]  R. P. Dilworth,et al.  Residuated Lattices. , 1938, Proceedings of the National Academy of Sciences of the United States of America.

[45]  H. Heijmans,et al.  The algebraic basis of mathematical morphology , 1988 .

[46]  Witold Pedrycz,et al.  Fast solving method of fuzzy relational equation and its application to lossy image compression/reconstruction , 2000, IEEE Trans. Fuzzy Syst..

[47]  Antonio di Nola,et al.  Lukasiewicz Transform Based Algorithm for Image Processing , 2006, 2006 IEEE International Conference on Fuzzy Systems.

[48]  Giorgie Dzhaparidze,et al.  A Generalized Notion of Weak Interpretability and the Corresponding Modal Logic , 1993, Ann. Pure Appl. Log..

[49]  Irina Perfilieva,et al.  Fuzzy transforms: Theory and applications , 2006, Fuzzy Sets Syst..

[50]  Hiroakira Ono,et al.  Cut elimination and strong separation for substructural logics: An algebraic approach , 2010, Ann. Pure Appl. Log..

[51]  Witold Pedrycz,et al.  Fuzzy relational compression , 1999, IEEE Trans. Syst. Man Cybern. Part B.

[52]  C. Chang,et al.  Algebraic analysis of many valued logics , 1958 .

[53]  H. Ono Substructural Logics and Residuated Lattices — an Introduction , 2003 .

[54]  Mehrnoosh Sadrzadeh,et al.  Algebra and Sequent Calculus for Epistemic Actions , 2005, LCMAS.

[55]  Witold Pedrycz,et al.  Relational image compression: optimizations through the design of fuzzy coders and YUV color space , 2005, Soft Comput..

[56]  Giovanni Panti,et al.  A geometric proof of the completeness of the Łukasiewicz calculus , 1995, Journal of Symbolic Logic.

[57]  James G. Raftery,et al.  Correspondences between gentzen and hilbert systems , 2006, Journal of Symbolic Logic.

[58]  Giangiacomo Gerla,et al.  Fuzzy Logic: Mathematical Tools for Approximate Reasoning , 2001 .

[59]  Henk J. A. M. Heijmans,et al.  The algebraic basis of mathematical morphology. I Dilations and erosions , 1990, Comput. Vis. Graph. Image Process..

[60]  Jean Serra,et al.  Image Analysis and Mathematical Morphology , 1983 .

[61]  Pedro Resende Tropological systems are points of quantales , 2002 .

[62]  Antonio di Nola,et al.  On normal forms in Łukasiewicz logic , 2004, Arch. Math. Log..

[63]  Steven J. Vickers,et al.  Quantales, observational logic and process semantics , 1993, Mathematical Structures in Computer Science.

[64]  R Cignoli Free lattice - ordered abelian groups and varieties of mv - algebras , 1993 .

[65]  Steven J. Vickers,et al.  Localic sup-lattices and tropological systems , 2003, Theor. Comput. Sci..

[66]  D. Mundici,et al.  Algebraic Foundations of Many-Valued Reasoning , 1999 .

[67]  M. de Rijke,et al.  Modal Logic , 2001, Cambridge Tracts in Theoretical Computer Science.

[68]  Kaoru Hirota,et al.  ON A LOSSY IMAGE COMPRESSION/RECONSTRUCTION METHOD BASED ON FUZZY RELATIONAL EQUATIONS , 2004 .

[69]  Pedro Resende,et al.  Quantales, finite observations and strong bisimulation , 2001, Theor. Comput. Sci..

[70]  Hiroakira Ono,et al.  Algebraization, Parametrized Local Deduction Theorem and Interpolation for Substructural Logics over FL , 2006, Stud Logica.