Approximation of Haar distributed matrices and limiting distributions of eigenvalues of Jacobi ensembles

We develop a tool to approximate the entries of a large dimensional complex Jacobi ensemble with independent complex Gaussian random variables. Based on this and the author’s earlier work in this direction, we obtain the Tracy–Widom law of the largest singular values of the Jacobi emsemble. Moreover, the circular law, the Marchenko–Pastur law, the central limit theorem, and the laws of large numbers for the spectral norms are also obtained.

[1]  Z. Bai,et al.  Limiting behavior of the eigenvalues of a multivariate F matrix , 1983 .

[2]  T. Guhr,et al.  RANDOM-MATRIX THEORIES IN QUANTUM PHYSICS : COMMON CONCEPTS , 1997, cond-mat/9707301.

[3]  J. Keating Recent Perspectives in Random Matrix Theory and Number Theory , 2005 .

[4]  Gaussian fluctuations for \beta Ensembles , 2007, math/0703140.

[5]  Nicholas M. Katz,et al.  Random matrices, Frobenius eigenvalues, and monodromy , 1998 .

[6]  A. James Distributions of Matrix Variates and Latent Roots Derived from Normal Samples , 1964 .

[7]  Anja Vogler,et al.  An Introduction to Multivariate Statistical Analysis , 2004 .

[8]  Steffen L. Lauritzen,et al.  Finite de Finetti theorems in linear models and multivariate analysis , 1992 .

[9]  Y. Yin Limiting spectral distribution for a class of random matrices , 1986 .

[10]  M. Stephanov,et al.  Random Matrices , 2005, hep-ph/0509286.

[11]  J. W. Silverstein,et al.  Spectral Analysis of Large Dimensional Random Matrices , 2009 .

[12]  J. W. Silverstein,et al.  Spectral Analysis of Networks with Random Topologies , 1977 .

[13]  Rajendra Bhatia,et al.  Bounds for the variation of the roots of a polynomial and the eigenvalues of a matrix , 1990 .

[14]  Alexander Soshnikov,et al.  Central limit theorem for traces of large random symmetric matrices with independent matrix elements , 1998 .

[15]  Large deviations for functions of two random projection matrices , 2005, math/0504435.

[16]  A. Edelman,et al.  Matrix models for beta ensembles , 2002, math-ph/0206043.

[17]  Ioana Dumitriu,et al.  DISTRIBUTIONS OF THE EXTREME EIGENVALUES OF THE COMPLEX JACOBI RANDOM MATRIX ENSEMBLE , 2005 .

[18]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[19]  Z. Bai,et al.  On the limit of the largest eigenvalue of the large dimensional sample covariance matrix , 1988 .

[20]  E. Wigner On the Distribution of the Roots of Certain Symmetric Matrices , 1958 .

[21]  Freeman J. Dyson,et al.  The Threefold Way. Algebraic Structure of Symmetry Groups and Ensembles in Quantum Mechanics , 1962 .

[22]  A. Edelman The Probability that a Random Real Gaussian Matrix haskReal Eigenvalues, Related Distributions, and the Circular Law , 1997 .

[23]  Tiefeng Jiang,et al.  How many entries of a typical orthogonal matrix can be approximated by independent normals , 2006 .

[24]  N. O'Connell,et al.  PATTERNS IN EIGENVALUES: THE 70TH JOSIAH WILLARD GIBBS LECTURE , 2003 .

[25]  I. Johnstone On the distribution of the largest eigenvalue in principal components analysis , 2001 .

[26]  M. Capitaine,et al.  Asymptotic freeness by generalized moments for Gaussian and Wishart matrices. Application to beta random matrices , 2004 .

[27]  Antonia Maria Tulino,et al.  Random Matrix Theory and Wireless Communications , 2004, Found. Trends Commun. Inf. Theory.

[28]  Z. Bai METHODOLOGIES IN SPECTRAL ANALYSIS OF LARGE DIMENSIONAL RANDOM MATRICES , A REVIEW , 1999 .

[29]  P. Forrester Log-Gases and Random Matrices , 2010 .

[30]  Improving spectral-variation bounds with Chebyshev polynomials , 1990 .

[31]  A. Constantine Some Non-Central Distribution Problems in Multivariate Analysis , 1963 .

[32]  Intégrales matricielles et probabilités non-commutatives , 2003 .

[33]  R. Muirhead Aspects of Multivariate Statistical Theory , 1982, Wiley Series in Probability and Statistics.

[34]  Dudley,et al.  Real Analysis and Probability: Measurability: Borel Isomorphism and Analytic Sets , 2002 .

[35]  Alan Edelman,et al.  The Circular Law and the Probability that a Random Matrix Has k Real Eigenvalues , 1993 .

[36]  J. W. Silverstein,et al.  COVARIANCE MATRICES , 2022 .

[37]  V. Marčenko,et al.  DISTRIBUTION OF EIGENVALUES FOR SOME SETS OF RANDOM MATRICES , 1967 .

[38]  J. W. Silverstein The Smallest Eigenvalue of a Large Dimensional Wishart Matrix , 1985 .

[39]  Michel Loève,et al.  Probability Theory I , 1977 .

[40]  Mesoscopic transport through chaotic cavities: A random S-matrix theory approach. , 1994, Physical review letters.

[41]  C.W.J. Beenakker,et al.  Universal Quantum Signatures of Chaos in Ballistic Transport , 1994 .

[42]  P. J. Forrester Quantum conductance problems and the Jacobi ensemble , 2006 .

[43]  S. Geman THE SPECTRAL RADIUS OF LARGE RANDOM MATRICES , 1986 .

[44]  Tiefeng Jiang,et al.  The asymptotic distributions of the largest entries of sample correlation matrices , 2004, math/0406184.

[45]  A. Dembo,et al.  Spectral measure of large random Hankel, Markov and Toeplitz matrices , 2003, math/0307330.

[46]  Tiefeng Jiang,et al.  Maxima of entries of Haar distributed matrices , 2005 .

[47]  Uniwersytet Jagiello,et al.  Truncations of random unitary matrices , 2000 .

[48]  C. Beenakker Random-matrix theory of quantum transport , 1996, cond-mat/9612179.

[49]  Benoit Collins Product of random projections, Jacobi ensembles and universality problems arising from free probability , 2005 .

[50]  Z. Bai,et al.  Convergence to the Semicircle Law , 1988 .

[51]  Z. Bai,et al.  Limit of the smallest eigenvalue of a large dimensional sample covariance matrix , 1993 .

[52]  C. Tracy,et al.  The Distribution of the Largest Eigenvalue in the Gaussian Ensembles: β = 1, 2, 4 , 1997, solv-int/9707001.

[53]  Dag Jonsson Some limit theorems for the eigenvalues of a sample covariance matrix , 1982 .

[54]  P. Koev,et al.  On the largest principal angle between random subspaces , 2006 .

[55]  Jack W. Silverstein Comments on a result of Yin, Bai, and Krishnaiah for large dimensional multivariate F matrices , 1984 .

[56]  Lech Maligranda,et al.  The Continuous Case , 2006 .

[57]  K. Wachter The Strong Limits of Random Matrix Spectra for Sample Matrices of Independent Elements , 1978 .

[58]  H. Teicher,et al.  Probability theory: Independence, interchangeability, martingales , 1978 .

[59]  Jack W. Silverstein Some limit theorems on the eigenvectors of large dimensional sample covariance matrices , 1984 .

[60]  Michel Ledoux,et al.  Differential Operators and Spectral Distributions of Invariant Ensembles from the Classical Orthogonal Polynomials. The Continuous Case , 2004 .

[61]  P. Hsu ON THE DISTRIBUTION OF ROOTS OF CERTAIN DETERMINANTAL EQUATIONS , 1939 .

[62]  P. Deift Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach , 2000 .

[63]  K. Johansson Shape Fluctuations and Random Matrices , 1999, math/9903134.

[64]  Denes Petz,et al.  Large deviation for the empirical eigenvalue density of truncated Haar unitary matrices , 2004, math/0409552.

[65]  M. L. Eaton Multivariate statistics : a vector space approach , 1985 .

[66]  C. Tracy,et al.  Mathematical Physics © Springer-Verlag 1996 On Orthogonal and Symplectic Matrix Ensembles , 1995 .

[67]  D. R. Jensen Symmetry and Unimodality in Linear Inference , 1997 .