Meteorites and the early solar system II

They range in size from microscopic particles to masses of many tons. The geologic diversity of asteroids and other rocky bodies of the solar system are displayed in the enormous variety of textures and mineralogies observed in meteorites. The composition, chemistry, and mineralogy of primitive meteorites collectively provide evidence for a wide variety of chemical and physical processes. This book synthesizes our current understanding of the early solar system, summarizing information about processes that occurred before its formation. It will be valuable as a textbook for graduate education in planetary science and as a reference for meteoriticists and researchers in allied fields worldwide.

[1]  S. Charnley,et al.  Chemical models of interstellar gas-grain processes. I. Modelling and the effect of accretion on gas abundances and mantle composition in dense clouds. , 1990 .

[2]  Y. Pendleton,et al.  The Organic Refractory Material in the Diffuse Interstellar Medium: Mid-Infrared Spectroscopic Constraints , 2002 .

[3]  H. Zook,et al.  Orbital evolution of dust particles from comets and asteroids , 1992 .

[4]  Neal J. Evans,et al.  Discovery of interstellar methane - Observations of gaseous and solid CH4 absorption toward young stars in molecular clouds , 1991 .

[5]  T. Henning,et al.  Steps toward interstellar silicate mineralogy. I. Laboratory results of a silicate glass of mean cosmic composition. , 1994 .

[6]  S. Charnley,et al.  Interstellar diazenylium recombination and nitrogen isotopic fractionation , 2004 .

[7]  D. Deamer,et al.  Self-assembling amphiphilic molecules: Synthesis in simulated interstellar/precometary ices. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[8]  T. Yada,et al.  Antarctic micrometeorites collected by the Japanese antarctic research expedition teams during 1996–1999 , 2002 .

[9]  Ann N Nguyen,et al.  Discovery of Ancient Silicate Stardust in a Meteorite , 2004, Science.

[10]  S. A. Stern,et al.  Comets and the origin of the solar system - Reading the Rosetta Stone , 1993 .

[11]  D. Brownlee,et al.  A Direct Measurement of the Terrestrial Mass Accretion Rate of Cosmic Dust , 1993, Science.

[12]  A. Tielens Deuterium and interstellar chemical processes , 1997 .

[13]  E. Zinner STELLAR NUCLEOSYNTHESIS AND THE ISOTOPIC COMPOSITION OF PRESOLAR GRAINS FROM PRIMITIVE METEORITES , 1998 .

[14]  F. Whipple OORT-Cloud and Kuiper-Belt Comets , 2000 .

[15]  Scott Messenger,et al.  Pristine presolar silicon carbide , 2003 .

[16]  T. Millar,et al.  The role of H2D+ in the deuteration of interstellar molecules , 2000, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[17]  T. Graedel,et al.  Carbon and oxygen isotope fractionation in dense interstellar clouds , 1984 .

[18]  Y. Pendleton,et al.  Evidence for chemical processing of precometary icy grains in circumstellar environments of pre-main-sequence stars , 1995 .

[19]  H. Yurimoto,et al.  Stardust silicates from primitive meteorites , 2004, Nature.

[20]  E. Herbst,et al.  The possibility of nitrogen isotopic fractionation in interstellar clouds , 2000 .

[21]  G. Flynn Atmospheric entry heating: A criterion to distinguish between asteroidal and cometary sources of interplanetary dust , 1989 .

[22]  H. Leroux,et al.  Friable Micrometeorites from Central Antarctica Snow , 2005 .

[23]  S. Sandford The inventory of interstellar materials available for the formation of the solar system. , 1996, Meteoritics & planetary science.

[24]  S. Sandford,et al.  Life's far-flung raw materials. , 1999, Scientific American.

[25]  A. Tielens,et al.  Evolution of interstellar dust , 1987 .

[26]  S. Messenger,et al.  Evidence for molecular cloud material in meteorites and interplanetary dust , 1997 .

[27]  Rafael Bachiller,et al.  MOLECULAR OUTFLOWS FROM YOUNG STELLAR OBJECTS , 1993 .

[28]  Th. Henning,et al.  The Structure and Appearance of Protostellar Accretion Disks: Limits on Disk Flaring , 1997 .

[29]  H. Cane,et al.  Energetic particle abundances in solar electron events , 1990 .

[30]  D. Hunten,et al.  The Discovery of Dust Trails in the Orbits of Periodic Comets , 1986, Science.

[31]  M. Maurette,et al.  Petrology and geochemistry of Antarctic micrometeorites , 1994 .

[32]  Neal J. Evans Physical conditions in regions of star formation , 1999 .

[33]  C. Lonsdale,et al.  4.6 Micron absorption features due to solid phase CO and Cyano group molecules toward compact infrared sources , 1984 .

[34]  F. Stadermann,et al.  Samples of Stars Beyond the Solar System: Silicate Grains in Interplanetary Dust , 2003, Science.

[35]  E. F. Dishoeck,et al.  Chemical evolution of star-forming regions. , 1998, Annual review of astronomy and astrophysics.

[36]  R. Vogt,et al.  Elemental Composition of Solar Energetic Particles , 1984 .

[37]  J. Bally,et al.  Numerous Proplyd Candidates in the Harsh Environment of the Carina Nebula , 2003 .

[38]  Scott A. Sandford,et al.  Organic Compounds Produced by Photolysis of Realistic Interstellar and Cometary Ice Analogs Containing Methanol , 1995 .

[39]  David Jewitt,et al.  Kuiper Belt Objects: Relics from the Accretion Disk of the Sun , 2002 .

[40]  A. Tielens,et al.  Interstellar polycyclic aromatic hydrocarbons: the infrared emission bands, the excitation/emission mechanism, and the astrophysical implications. , 1989, The Astrophysical journal. Supplement series.

[41]  J. Silk,et al.  Clumpy molecular clouds - A dynamic model self-consistently regulated by T Tauri star formation , 1980 .

[42]  T. Henning,et al.  Dust metamorphosis in the galaxy , 1995 .

[43]  S. Sandford,et al.  Infrared spectroscopy of dense clouds in the C-H stretch region: methanol and "diamonds." , 1992, The Astrophysical journal.

[44]  S. Tachibana,et al.  The Initial Abundance of 60Fe in the Solar System , 2003 .

[45]  A. Tielens,et al.  The Absence of Crystalline Silicates in the Diffuse Interstellar Medium , 2004, astro-ph/0403609.

[46]  S. Pizzarello,et al.  Isotopic and molecular analyses of hydrocarbons and monocarboxylic acids of the Murchison meteorite. , 1992, Geochimica et cosmochimica acta.

[47]  J. Greenberg,et al.  A UNIFIED MODEL OF INTERSTELLAR DUST , 1997 .

[48]  A. Tielens Surface chemistry of deuterated molecules , 1983 .

[49]  Jin-Young Park,et al.  Computational Confirmation of the Carrier for the “XCN” Interstellar Ice Band: OCN– Charge Transfer Complexes , 2004 .

[50]  S. Sandford,et al.  Laboratory studies of the infrared spectral properties of CO in astrophysical ices. , 1988, The Astrophysical journal.

[51]  P. Goldsmith Molecular Clouds: An Overview , 1987 .

[52]  A. Cameron Formation and evolution of the primitive solar nebula , 1985 .

[53]  S. Sandford,et al.  Interplanetary dust particles. , 2003 .

[54]  P. Weissman,et al.  Oort Cloud Formation and Dynamics , 2004 .

[55]  R. Klessen,et al.  Control of star formation by supersonic turbulence , 2000, astro-ph/0301093.

[56]  P. Hoppe,et al.  Discovery of Abundant In Situ Silicate and Spinel Grains from Red Giant Stars in a Primtive Meteorite , 2004 .

[57]  B. Turner Deuterated Molecules in Translucent and Dark Clouds , 2001 .

[58]  R Shipp,et al.  Isotopic characterisation of kerogen-like material in the Murchison carbonaceous chondrite. , 1987, Geochimica et cosmochimica acta.

[59]  S. Messenger,et al.  Supernova Olivine from Cometary Dust , 2005, Science.

[60]  Tomoki Nakamura,et al.  Bulk mineralogy of individual micrometeorites determined by X-ray diffraction analysis and transmission electron microscopy , 2001 .

[61]  F. Shu,et al.  The Origin of Chondrules and Refractory Inclusions in Chondritic Meteorites , 2001 .

[62]  M. Moore,et al.  Energetic processing of laboratory ice analogs: UV photolysis versus ion bombardment , 2001 .

[63]  E. Jehin,et al.  Anomalous Nitrogen Isotope Ratio in Comets , 2003, Science.

[64]  Jan H. Oort,et al.  The structure of the cloud of comets surrounding the Solar System and a hypothesis concerning its origin , 1950 .

[65]  Comets: A Link between Interstellar and Nebular Chemistry , 2000 .

[66]  S. Messenger Identification of molecular-cloud material in interplanetary dust particles , 2000, Nature.

[67]  M. Lee,et al.  A New Type of Meteoritic Diamond in the Enstatite Chondrite Abee , 1992, Science.

[68]  E. Steel,et al.  Interstellar diamonds in meteorites , 1987, Nature.

[69]  P. Hoppe,et al.  60Fe: A Heat Source for Planetary Differentiation from a Nearby Supernova Explosion , 2005 .

[70]  T. Graedel,et al.  Ion-molecule chemistry of dense interstellar clouds - Nitrogen-, oxygen-, and carbon-bearing molecule abundances and isotopic ratios , 1989 .

[71]  Mitsuru Ebihara,et al.  Solar-system abundances of the elements , 1982 .

[72]  J. Geiss,et al.  Ion composition in the solar wind in relation to solar abundances , 1985 .

[73]  D. Brownlee,et al.  An infrared spectral match between GEMS and interstellar grains. , 1999, Science.

[74]  Edwin E. Salpeter,et al.  Surface recombination of hydrogen molecules , 1971 .

[75]  G. Flynn,et al.  The Abundance Pattern of Elements Having Low Nebular Condensation Temperatures in Interplanetary Dust Particles: Evidence for a New Chemical Type of Chondritic Material , 1996 .

[76]  S. Sandford,et al.  Interplanetary dust particles collected in the stratosphere: observations of atmospheric heating and constraints on their interrelationships and sources. , 1989, Icarus.

[77]  J. Brucato,et al.  C-H Bond Formation in Carbon Grains by Exposure to Atomic Hydrogen: The Evolution of the Carrier of the Interstellar 3.4 Micron Band , 2002 .

[78]  Ralph E. Pudritz,et al.  Disk Winds and the Accretion--Outflow Connection , 1999 .

[79]  D. Lis,et al.  Chemical Composition Diversity Among 24 Comets Observed at Radio Wavelengths , 2002 .

[80]  Gary R. Huss,et al.  PRESOLAR DIAMOND, SIC, AND GRAPHITE IN PRIMITIVE CHONDRITES : ABUNDANCES AS A FUNCTION OF METEORITE CLASS AND PETROLOGIC TYPE , 1995 .

[81]  H. Breneman,et al.  SOLAR CORONAL AND PHOTOSPHERIC ABUNDANCES FROM SOLAR ENERGETIC PARTICLE MEASUREMENTS , 1985 .

[82]  R. Zare,et al.  Observation of Indigenous Polycyclic Aromatic Hydrocarbons in ‘Giant’ carbonaceous Antarctic Micrometeorites , 1998, Origins of life and evolution of the biosphere.

[83]  G. Wasserburg,et al.  Short-Lived Nuclei in the Early Solar System: A Low Mass Stellar Source? , 1999, Publications of the Astronomical Society of Australia.

[84]  John F. Kerridge,et al.  Meteorites and the early solar system , 1988 .

[85]  F. Stadermann,et al.  Presolar spinel grains from the Murray and Murchison carbonaceous chondrites , 2003 .

[86]  C. Vastel,et al.  First Detection of Doubly Deuterated Hydrogen Sulfide , 2003, astro-ph/0307221.

[87]  R. Gould,et al.  The Interstellar Medium , 1970 .

[88]  S. Charnley,et al.  The End of Interstellar Chemistry as the Origin of Nitrogen in Comets and Meteorites , 2002 .

[89]  G. Huss,et al.  Presolar diamond, silicon carbide, and graphite in carbonaceous chondrites: implications for thermal processing in the solar nebula , 2003 .

[90]  A. Tielens,et al.  Chemical Evolution of Protostellar Matter , 2000 .

[91]  S. Charnley,et al.  Chemical Evolution in Protostellar Envelopes: Cocoon Chemistry , 2003 .

[92]  J. Greenberg,et al.  Ions in grain mantles - The 4.62 micron absorption by OCN(-) in W33A , 1987 .

[93]  C. Floss,et al.  Discovery of Abundant Presolar Silicates in Subgroups of Antarctic Micrometeorites , 2005 .

[94]  J. Nuth,et al.  Infrared spectra of proton irradiated ices containing methanol , 1996 .

[95]  S. Tremaine,et al.  The Origin of Short-Period Comets , 1988 .

[96]  E. Ryan,et al.  The identification of crystalline olivine in cometary silicates , 1989 .

[97]  K. Lodders Solar System Abundances and Condensation Temperatures of the Elements , 2003 .

[98]  Susan Taylor,et al.  Concentration and variability of the AIB amino acid in polar micrometeorites: Implications for the exogenous delivery of amino acids to the primitive Earth , 2004 .

[99]  S. Pizzarello,et al.  Unusual stable isotope ratios in amino acid and carboxylic acid extracts from the Murchison meteorite , 1987, Nature.

[100]  C. Lada,et al.  Embedded Clusters in Molecular Clouds , 2003, astro-ph/0301540.

[101]  S. Sandford,et al.  Deuterated Interstellar Polycyclic Aromatic Hydrocarbons , 2004 .

[102]  L. Hartmann,et al.  The FU Orionis Phenomenon , 1996 .

[103]  S. Sandford Solar flare track densities in interplanetary dust particles The determination of an asteroidal versus cometary source of the zodiacal dust cloud , 1986 .

[104]  C. Walmsley,et al.  Deuterated water and ammonia in hot cores , 1990 .

[105]  J. H. Parkinson,et al.  Solar abundances from X-ray flare observations , 1981 .

[106]  N. Grevesse,et al.  Abundances of the elements: Meteoritic and solar , 1989 .

[107]  J. Crovisier,et al.  The composition of cometary volatiles , 2004 .

[108]  Harold F. Levison,et al.  The Origin of Halley-Type Comets: Probing the Inner Oort Cloud , 2000 .

[109]  A. Tielens,et al.  Interstellar solid CO: polar and nonpolar interstellar ices. , 1991, The Astrophysical journal.

[110]  A. Boss TEMPERATURES IN PROTOPLANETARY DISKS , 1998 .

[111]  Pascale Ehrenfreund,et al.  A voyage from dark clouds to the early Earth , 2000 .

[112]  S. Macko,et al.  Carbon isotope composition of individual amino acids in the Murchison meteorite , 1990, Nature.

[113]  Alexander G. G. M. Tielens,et al.  Model calculations of the molecular composition of interstellar grain mantles , 1982 .

[114]  G. Cody,et al.  NMR studies of chemical structural variation of insoluble organic matter from different carbonaceous chondrite groups , 2005 .

[115]  D. Brownlee,et al.  Cometary Particles: Thin Sectioning and Electron Beam Analysis , 1986, Science.

[116]  E. Zinner Interstellar cloud material in meteorites , 1988 .

[117]  E. Herbst GAS PHASE CHEMICAL PROCESSES IN MOLECULAR CLOUDS , 1987 .

[118]  Alexander G. G. M. Tielens,et al.  AN ISO SWS VIEW OF INTERSTELLAR ICES : FIRST RESULTS , 1996 .

[119]  R. Greenberg,et al.  The formation and origin of the IRAS zodiacal dust bands as a consequence of single collisions between asteroids , 1986 .

[120]  L. Grossman :Meteorites: Their Record of Early Solar-System History , 1987 .

[121]  Michael J. Mumma,et al.  REMOTE INFRARED OBSERVATIONS OF PARENT VOLATILES IN COMETS: A WINDOW ON THE EARLY SOLAR SYSTEM , 2003 .

[122]  C. Maggiore,et al.  A test of the smoothness of the elemental abundances of carbonaceous chondrites , 1989 .

[123]  Complete depletion in prestellar cores , 2004, astro-ph/0402493.

[124]  A. Tielens,et al.  The Interstellar 4.62 Micron Band , 1999, The Astrophysical journal.

[125]  S. Prasad,et al.  UV radiation field inside dense clouds: its possible existence and chemical implications , 1983 .

[126]  A. Tielens,et al.  On the molecular complexity of the hot cores in Orion A - Grain surface chemistry as 'The last refuge of the scoundrel' , 1992 .

[127]  R N Zare,et al.  Identification of Complex Aromatic Molecules in Individual Interplanetary Dust Particles , 1993, Science.

[128]  S. Pizzarello,et al.  The deuterium enrichment of individual amino acids in carbonaceous meteorites: A case for the presolar distribution of biomolecule precursors , 2005 .