On the Turán Properties of Infinite Graphs
暂无分享,去创建一个
Let $G^{(\infty)}$ be an infinite graph with the vertex set corresponding to the set of positive integers ${\Bbb N}$. Denote by $G^{(l)}$ a subgraph of $G^{(\infty)}$ which is spanned by the vertices $\{1,\dots,l\}$. As a possible extension of Turan's theorem to infinite graphs, in this paper we will examine how large $\liminf_{l\rightarrow \infty} {|E(G^{(l)})|\over l^2}$ can be for an infinite graph $G^{(\infty)}$, which does not contain an increasing path $I_k$ with $k+1$ vertices. We will show that for sufficiently large $k$ there are $I_k$–free infinite graphs with ${1\over 4}+{1\over 200}
[1] Joel Spencer,et al. Paul Erdös : the art of counting : selected writings , 1973 .
[2] P. Erdos. Problems and Results in Combinatorial Analysis , 2022 .