The effect of the half-width of the 22-GHz water vapor line on retrievals of temperature and water vapor profiles with a 12-channel microwave radiometer

We show that observed biases in retrievals of temperature and water vapor profiles from a 12-channel microwave radiometer arise from systematic differences between the observed and model-calculated brightness temperatures at five measurement frequencies between 22 and 30 GHz. Replacing the value for the air-broadened half-width of the 22-GHz water vapor line used in the Rosenkranz absorption model with the 5% smaller half-width from the HITRAN compilation largely eliminated the systematic differences in brightness temperatures. An a priori statistical retrieval based on the revised model demonstrated significant improvements in the accuracy and vertical resolution of the retrieved temperature and water vapor profiles. Additional improvements were demonstrated by combining the MWRP retrievals with those from the GOES-8 sounder and by incorporating brightness temperature measurements at off-zenith angles in the retrievals.

[1]  J. C. Liljegren,et al.  Initial evaluation of profiles of temperature, water vapor and cloud liquid water from a new microwave radiometer , 2001 .

[2]  V. M. Devi,et al.  THE HITRAN MOLECULAR DATABASE: EDITIONS OF 1991 AND 1992 , 1992 .

[3]  Hans J. Liebe,et al.  Millimeter-wave properties of the atmosphere: Laboratory studies and propagation modeling , 1987 .

[4]  A. Paukkunen,et al.  The accuracy and performance of the new Vaisala RS90 radiosonde in operational use , 2001 .

[5]  James J. Hack,et al.  A comparison of single column model simulations of summertime midlatitude continental convection , 2000 .

[6]  Hans J. Liebe,et al.  Propagation Modeling of Moist Air and Suspended Water/Ice Particles at Frequencies Below 1000 GHz , 1993 .

[7]  S. Keihm,et al.  Improved 20‐ to 32‐GHz atmospheric absorption model , 1998 .

[8]  J. Güldner,et al.  Remote Sensing of the Thermodynamic State of the Atmospheric Boundary Layer by Ground-Based Microwave Radiometry , 2001 .

[9]  William L. Smith,et al.  The Retrieval of Planetary Boundary Layer Structure Using Ground-Based Infrared Spectral Radiance Measurements , 1999 .

[10]  P. Rosenkranz Water vapor microwave continuum absorption: A comparison of measurements and models , 1998 .

[11]  Jonathan P. Taylor,et al.  Comparison of In Situ Humidity Data from Aircraft, Dropsonde, and Radiosonde , 2004 .

[12]  F. Solheim,et al.  Passive ground-based remote sensing of atmospheric temperature, water vapor, and cloud liquid water profiles by a frequency synthesized microwave radiometer;Passive bodengebundene atmosphärische Fernerkundung von Temperatur-, Wasserdampf- und Wolkenwasserprofilen mit eine frequenzsynthetisierten Mik , 1998 .

[13]  Laurence S. Rothman,et al.  Dipole moment of water from Stark measurements of H2O, HDO, and D2O , 1973 .

[14]  Hans J. Liebe,et al.  Accurate Foreign‐Gas‐Broadening Parameters of the 22‐GHz H2O Line from Refraction Spectroscopy , 1969 .

[15]  Ed R. Westwater,et al.  Radiometric profiling of temperature, water vapor and cloud liquid water using various inversion methods , 1998 .