Effects of arterial transit delay on cerebral blood flow quantification using arterial spin labeling in an elderly cohort

To investigate whether measurement of arterial transit time (ATT) can improve the accuracy of arterial spin labeling (ASL) cerebral blood flow (CBF) quantification in an elderly cohort due to the potentially prolonged ATT in the cohort.

[1]  Karl J. Friston,et al.  Unified segmentation , 2005, NeuroImage.

[2]  P. Luiten,et al.  Cerebral microvascular pathology in aging and Alzheimer's disease , 2001, Progress in Neurobiology.

[3]  Donald S. Williams,et al.  Perfusion imaging , 1992, Magnetic resonance in medicine.

[4]  Sharon K. Inouye,et al.  Delirium in elderly adults: diagnosis, prevention and treatment , 2009, Nature Reviews Neurology.

[5]  P. Tofts,et al.  Normal cerebral perfusion measurements using arterial spin labeling: Reproducibility, stability, and age and gender effects , 2004, Magnetic resonance in medicine.

[6]  D. Alsop,et al.  Continuous flow‐driven inversion for arterial spin labeling using pulsed radio frequency and gradient fields , 2008, Magnetic resonance in medicine.

[7]  J. Detre,et al.  Arterial spin labeling blood flow MRI: its role in the early characterization of Alzheimer's disease. , 2010, Journal of Alzheimer's disease : JAD.

[8]  D. S. Williams,et al.  Magnetic resonance imaging of perfusion using spin inversion of arterial water. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[9]  Donald S. Williams,et al.  Tissue specific perfusion imaging using arterial spin labeling , 1994, NMR in biomedicine.

[10]  Norbert Schuff,et al.  Arterial spin labeling MRI study of age and gender effects on brain perfusion hemodynamics , 2012, Magnetic resonance in medicine.

[11]  Esben Thade Petersen,et al.  Model‐free arterial spin labeling quantification approach for perfusion MRI , 2006, Magnetic resonance in medicine.

[12]  Maolin Qiu,et al.  Arterial transit time effects in pulsed arterial spin labeling CBF mapping: Insight from a PET and MR study in normal human subjects , 2010, Magnetic resonance in medicine.

[13]  Gregory G Brown,et al.  Measurement of cerebral perfusion with arterial spin labeling: Part 2. Applications , 2007, Journal of the International Neuropsychological Society.

[14]  David H. Salat,et al.  The Relationship between Cortical Blood Flow and Sub-Cortical White-Matter Health across the Adult Age Span , 2013, PloS one.

[15]  A. Hofman,et al.  Incidence and risk of dementia. The Rotterdam Study. , 1998, American journal of epidemiology.

[16]  Roger J Ordidge,et al.  In vivo hadamard encoded continuous arterial spin labeling (H‐CASL) , 2010, Magnetic resonance in medicine.

[17]  J. Detre,et al.  Reduced Transit-Time Sensitivity in Noninvasive Magnetic Resonance Imaging of Human Cerebral Blood Flow , 1996, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[18]  P. Hutchins,et al.  The microcirculation in experimental hypertension and aging. , 1996, Cardiovascular research.

[19]  C. Choi,et al.  Estimating the probability of stroke in Korean hypertensive patients visiting tertiary hospitals using a risk profile from the framingham study , 2009, BMC neurology.

[20]  M. Schnall,et al.  Comparison of quantitative perfusion imaging using arterial spin labeling at 1.5 and 4.0 Tesla , 2002, Magnetic resonance in medicine.

[21]  Joseph A Maldjian,et al.  Arterial transit time imaging with flow encoding arterial spin tagging (FEAST) , 2003, Magnetic resonance in medicine.

[22]  Peter Jezzard,et al.  Assessment of arterial arrival times derived from multiple inversion time pulsed arterial spin labeling MRI , 2010, Magnetic resonance in medicine.

[23]  Xavier Golay,et al.  Determining the longitudinal relaxation time (T1) of blood at 3.0 Tesla , 2004, Magnetic resonance in medicine.

[24]  Weiying Dai,et al.  Volumetric measurement of perfusion and arterial transit delay using hadamard encoded continuous arterial spin labeling , 2013, Magnetic resonance in medicine.

[25]  Albert Gjedde,et al.  Data-driven intensity normalization of PET group comparison studies is superior to global mean normalization , 2009, NeuroImage.

[26]  J. Detre,et al.  Perfusion magnetic resonance imaging with continuous arterial spin labeling: methods and clinical applications in the central nervous system. , 1999, European journal of radiology.

[27]  Xavier Golay,et al.  Quantitative assessment of cerebral hemodynamic parameters by QUASAR arterial spin labeling in Alzheimer's disease and cognitively normal Elderly adults at 3-tesla. , 2012, Journal of Alzheimer's disease : JAD.

[28]  D. Alsop,et al.  Novel risk markers and long-term outcomes of delirium: the successful aging after elective surgery (SAGES) study design and methods. , 2012, Journal of the American Medical Directors Association.

[29]  P. Hutchins,et al.  Decreases in cerebral microvasculature with age are associated with the decline in growth hormone and insulin-like growth factor 1. , 1997, Endocrinology.

[30]  Michael Bock,et al.  Arterial spin labeling in combination with a look‐locker sampling strategy: Inflow turbo‐sampling EPI‐FAIR (ITS‐FAIR) , 2001, Magnetic resonance in medicine.

[31]  S Warach,et al.  A general kinetic model for quantitative perfusion imaging with arterial spin labeling , 1998, Magnetic resonance in medicine.

[32]  N. Tzourio-Mazoyer,et al.  Automated Anatomical Labeling of Activations in SPM Using a Macroscopic Anatomical Parcellation of the MNI MRI Single-Subject Brain , 2002, NeuroImage.

[33]  E. Pitman A NOTE ON NORMAL CORRELATION , 1939 .

[34]  Albert Gjedde,et al.  Normalization in PET group comparison studies—The importance of a valid reference region , 2008, NeuroImage.

[35]  R B D'Agostino,et al.  Probability of stroke: a risk profile from the Framingham Study. , 1991, Stroke.

[36]  D. F. R. Heijtel,et al.  Cerebral Perfusion Measurements in Elderly with Hypertension Using Arterial Spin Labeling , 2015, PloS one.

[37]  Weiying Dai,et al.  Reduced resolution transit delay prescan for quantitative continuous arterial spin labeling perfusion imaging , 2012, Magnetic resonance in medicine.

[38]  M. Bayes,et al.  The Probability of , 2001 .

[39]  Michael Erb,et al.  Comparison of longitudinal metabolite relaxation times in different regions of the human brain at 1.5 and 3 Tesla , 2003, Magnetic resonance in medicine.

[40]  W. J. Langford Statistical Methods , 1959, Nature.

[41]  M. Tosetti,et al.  Age dependence of cerebral perfusion assessed by magnetic resonance continuous arterial spin labeling , 2007, Journal of magnetic resonance imaging : JMRI.

[42]  G. Zaharchuk,et al.  Recommended implementation of arterial spin-labeled perfusion MRI for clinical applications: A consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia. , 2015, Magnetic resonance in medicine.

[43]  D. C. Howell Statistical Methods for Psychology , 1987 .

[44]  M. Raichle,et al.  What is the Correct Value for the Brain-Blood Partition Coefficient for Water? , 1985, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[45]  K. Yamashita,et al.  Simultaneous Measurement of Arterial Transit Time, Arterial Blood Volume, and Cerebral Blood Flow Using Arterial Spin-Labeling in Patients with Alzheimer Disease , 2009, American Journal of Neuroradiology.

[46]  C. Beaulieu,et al.  Pulsed arterial spin labeling parameter optimization for an elderly population , 2006, Journal of magnetic resonance imaging : JMRI.

[47]  J. Detre,et al.  Cerebral perfusion and arterial transit time changes during task activation determined with continuous arterial spin labeling , 2000, Magnetic resonance in medicine.