Hybrid Systems: Computation and Control

s of Invited Presentations Hybrid and Embedded Software Technologies for Production Large-Scale Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 David Sharp Numerical Methods for Differential Systems with Algebraic Equality and Inequality Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Uri M. Ascher From Models to Code: The Missing Link in Embedded Software . . . . . . . . . 5 Thomas A. Henzinger

[1]  Matthew Brand,et al.  Pattern discovery via entropy minimization , 1999, AISTATS.

[2]  James M. Rehg,et al.  Singularity analysis for articulated object tracking , 1998, Proceedings. 1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No.98CB36231).

[3]  H. Rauch Solutions to the linear smoothing problem , 1963 .

[4]  Chang‐Jin Kim,et al.  Dynamic linear models with Markov-switching , 1994 .

[5]  Michael I. Jordan,et al.  An Introduction to Variational Methods for Graphical Models , 1999, Machine Learning.

[6]  R. Shumway,et al.  Dynamic linear models with switching , 1991 .

[7]  David C. Brogan,et al.  Animating human athletics , 1995, SIGGRAPH.

[8]  Jamie S. Evans,et al.  Finite-Dimensional Filters for Passive Tracking of Markov Jump Linear Systems , 1998, Autom..

[9]  Radford M. Neal Connectionist Learning of Belief Networks , 1992, Artif. Intell..

[10]  Vladimir Pavlovic,et al.  Time-series classification using mixed-state dynamic Bayesian networks , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[11]  Zoubin Ghahramani,et al.  Learning Dynamic Bayesian Networks , 1997, Summer School on Neural Networks.

[12]  Michael Isard,et al.  A mixed-state condensation tracker with automatic model-switching , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[13]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems , 1988 .

[14]  James M. Rehg,et al.  A multiple hypothesis approach to figure tracking , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[15]  Ioannis A. Kakadiaris,et al.  Model-based estimation of 3D human motion with occlusion based on active multi-viewpoint selection , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[16]  R. E. Kalman,et al.  New Results in Linear Filtering and Prediction Theory , 1961 .

[17]  Stephen M. Omohundro,et al.  Nonlinear manifold learning for visual speech recognition , 1995, Proceedings of IEEE International Conference on Computer Vision.

[18]  Biing-Hwang Juang,et al.  Fundamentals of speech recognition , 1993, Prentice Hall signal processing series.

[19]  Geoffrey E. Hinton,et al.  Switching State-Space Models , 1996 .

[20]  Radford M. Neal A new view of the EM algorithm that justifies incremental and other variants , 1993 .

[21]  Dimitris N. Metaxas,et al.  Hybrid System Models of Navigation Strategies for Games and Animations , 2002, HSCC.

[22]  Michael Isard,et al.  Learning Multi-Class Dynamics , 1998, NIPS.