Existence and uniqueness of splittings for stationary iterative methods with applications to alternating methods

Summary. Given a nonsingular matrix $A$, and a matrix $T$ of the same order, under certain very mild conditions, there is a unique splitting $A=B-C$, such that $T=B^{-1}C$. Moreover, all properties of the splitting are derived directly from the iteration matrix $T$. These results do not hold when the matrix $A$ is singular. In this case, given a matrix $T$ and a splitting $A=B-C$ such that $T=B^{-1}C$, there are infinitely many other splittings corresponding to the same matrices $A$ and $T$, and different splittings can have different properties. For instance, when $T$ is nonnegative, some of these splittings can be regular splittings, while others can be only weak splittings. Analogous results hold in the symmetric positive semidefinite case. Given a singular matrix $A$, not for all iteration matrices $T$ there is a splitting corresponding to them. Necessary and sufficient conditions for the existence of such splittings are examined. As an illustration of the theory developed, the convergence of certain alternating iterations is analyzed. Different cases where the matrix is monotone, singular, and positive (semi)definite are studied.

[1]  R. Plemmons Regular splittings and the discrete Neumann problem , 1976 .

[2]  R. Plemmons,et al.  Convergent nonnegative matrices and iterative methods for consistent linear systems , 1978 .

[3]  J. Gillis,et al.  Matrix Iterative Analysis , 1961 .

[4]  Michael Eiermann,et al.  On the Construction of Semi-Iterative Methods , 1983 .

[5]  Rafael Bru,et al.  Multisplitting Preconditioners Based on Incomplete Choleski Factorizations , 1995, SIAM J. Matrix Anal. Appl..

[6]  R. Plemmons,et al.  Convergence of parallel multisplitting iterative methods for M-matrices , 1987 .

[7]  D. O’Leary,et al.  Multi-Splittings of Matrices and Parallel Solution of Linear Systems , 1985 .

[8]  Charles R. Johnson,et al.  The spectral radius of a product of nonnegative matrices , 1990 .

[9]  T. Elfving Block-iterative methods for consistent and inconsistent linear equations , 1980 .

[10]  D. Rose,et al.  Convergence of nested classical iterative methods for linear systems , 1990 .

[11]  H. Saunders Book Reviews : FINITE ELEMENT ANALYSIS FUNDAMENTALS R.H. Gallagher Prentice Hall, Inc., Englewood Cliffs, New Jersey (1975) , 1977 .

[12]  I. Marek,et al.  On the solution of singular linear systems of algebraic equations by semiiterative methods , 1988 .

[13]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[14]  Michele Benzi,et al.  A Parallel Block Projection Method of the Cimmino Type for Finite Markov Chains , 1995 .

[15]  J. Ortega Numerical Analysis: A Second Course , 1974 .

[16]  M. O'Carroll,et al.  Inconsistencies and S.O.R. Convergence for the Discrete Neumann Problem , 1973 .

[17]  L. Elsner Comparisons of weak regular splittings and multisplitting methods , 1989 .

[18]  Daniel B. Szyld,et al.  Equivalence of conditions for convergence of iterative methods for singular equations , 1994, Numer. Linear Algebra Appl..

[19]  Reinhard Nabben,et al.  A note on comparison theorems for splittings and multisplittings of Hermitian positive definite matrices , 1996 .

[20]  J. M. Ortega Efficient Implementations of Certain Iterative Methods , 1988 .

[21]  Michele Benzi,et al.  The Arithmetic Mean Method for Finding the Stationary Vector of Markov Chains , 1995, Parallel Algorithms Appl..

[22]  Yehuda Wallach,et al.  Iterative Solution of Linear Equations on a Parallel Processor System , 1977, IEEE Transactions on Computers.

[23]  Robert J. Plemmons,et al.  Nonnegative Matrices in the Mathematical Sciences , 1979, Classics in Applied Mathematics.

[24]  S. Venit,et al.  Numerical Analysis: A Second Course. , 1974 .

[25]  Gene H. Golub,et al.  Matrix computations , 1983 .

[26]  Y. Wallach,et al.  Alternating methods for sets of linear equations , 1979 .

[27]  Michael Neumann,et al.  Consistency and Convergence of the Parallel Multisplitting Method for Singular M-Matrices , 1989 .

[28]  G. Marchuk Splitting and alternating direction methods , 1990 .

[29]  Daniel B. Szyld,et al.  Iterative and semi-iterative methods for computing stationary probability vectors of Markov operators , 1993 .

[30]  Mark T. Jones,et al.  Two-Stage and Multisplitting Methods for the Parallel Solution of Linear Systems , 1992, SIAM J. Matrix Anal. Appl..

[31]  Robert E. White Multisplitting with different weighting schemes , 1989 .

[32]  L. J. Comrie,et al.  Mathematical Tables and Other Aids to Computation. , 1946 .

[33]  H. Schneider Theorems on M-splittings of a singular M-matrix which depend on graph structure☆ , 1984 .

[34]  K. Tanabe Characterization of linear stationary iterative processes for solving a singular system of linear equations , 1974 .

[35]  Loyce M. Adams,et al.  Additive polynomial preconditioners for parallel computers , 1989, Parallel Comput..

[36]  A. Ern,et al.  PROJECTED ITERATIVE ALGORITHMS WITH APPLICATION TO MULTICOMPONENT TRANSPORT , 1997 .

[37]  Daniel B. Szyld,et al.  Two-stage Multisplitting Methods with Overlapping Blocks , 1994, Numer. Linear Algebra Appl..

[38]  Mark T. Jones,et al.  Two-stage Multisplitting Methods with Overlapping Blocks , 1996, Numer. Linear Algebra Appl..

[39]  Nicholas J. Higham,et al.  Finite Precision Behavior of Stationary Iteration for Solving Singular Systems , 1993 .

[40]  Michael Griebel,et al.  Multilevel Algorithms Considered as Iterative Methods on Semidefinite Systems , 1994, SIAM J. Sci. Comput..

[41]  Richard S. Varga,et al.  A study of semiiterative methods for nonsymmetric systems of linear equations , 1985 .

[42]  Daniel B. Szyld,et al.  Comparison theorems for weak splittings of bounded operators , 1990 .

[43]  James M. Ortega,et al.  Iterative solution of nonlinear equations in several variables , 2014, Computer science and applied mathematics.

[44]  O. Axelsson Iterative solution methods , 1995 .

[45]  D. Young On the Consistency of Linear Stationary Iterative Methods , 1972 .

[46]  L. Adams m-Step Preconditioned Conjugate Gradient Methods , 1985 .

[47]  H. Keller On the Solution of Singular and Semidefinite Linear Systems by Iteration , 1965 .

[48]  J. Ortega Introduction to Parallel and Vector Solution of Linear Systems , 1988, Frontiers of Computer Science.

[49]  Louis A. Hageman,et al.  Iterative Solution of Large Linear Systems. , 1971 .

[50]  Iain S. Duff,et al.  A Block Projection Method for Sparse Matrices , 1992, SIAM J. Sci. Comput..

[51]  Richard S. Varga,et al.  A Comparison of the Successive Overrelaxation Method and Semi-Iterative Methods Using Chebyshev Polynomials , 1957 .

[52]  Achiya Dax,et al.  The Convergence of Linear Stationary Iterative Processes for Solving Singular Unstructured Systems of Linear Equations , 1990, SIAM Rev..

[53]  Ivo Marek,et al.  plittings of M-Operators: Irreducibility and the Index of the Iteration Operator , 1989 .

[54]  Zhi-Hao Cao,et al.  On convergence of nested stationary iterative methods , 1995 .

[55]  Abraham Berman,et al.  Consistency and Splittings , 1976 .

[56]  On the numerical solution of elliptic difference equations , 1955 .

[57]  Alston S. Householder,et al.  The Theory of Matrices in Numerical Analysis , 1964 .

[58]  R. P. Eddy,et al.  On the Iterative Solution of a System of Equations , 1952 .

[59]  Richard S. Varga,et al.  The analysis ofk-step iterative methods for linear systems from summability theory , 1983 .