Rational Approximation to the Exponential Function with Complex Conjugate Interpolation Points

In this paper, we study asymptotic properties of rational functions that interpolate the exponential function. The interpolation is performed with respect to a triangular scheme of complex conjugate points lying in bounded rectangular domains included in the horizontal strip |Imz|<[email protected] Moreover, the height of these domains cannot exceed some upper bound which depends on the type of rational functions. We obtain different convergence results and precise estimates for the error function in compact sets of C that generalize the classical properties of Pade approximants to the exponential function. The proofs rely on, among others, Walsh's theorem on the location of the zeros of linear combinations of derivatives of a polynomial and on Rolle's theorem for real exponential polynomials in the complex domain.

[1]  P. Borwein,et al.  Rational Interpolation to $e^x $, II , 1985 .

[2]  D. Lubinsky Divergence of complex rational approximations. , 1983 .

[3]  W. J. Thron,et al.  Encyclopedia of Mathematics and its Applications. , 1982 .

[4]  M. Marden Geometry of Polynomials , 1970 .

[5]  Peter Borwein,et al.  Rational interpolation to ex , 1982 .

[6]  A. Gončar ON THE CONVERGENCE OF PADÉ APPROXIMANTS , 1973 .

[7]  On Convergence of Padé Approximants , 1975 .

[8]  Ch. Pommerenke,et al.  Padé approximants and convergence in capacity , 1973 .

[9]  J. Walsh Interpolation and Approximation by Rational Functions in the Complex Domain , 1935 .

[10]  A. Levin,et al.  The Distribution of Poles of Rational Functions of best Approximation and Related Questions , 1969 .

[11]  D. Braess Nonlinear Approximation Theory , 1986 .

[12]  Herbert Stahl,et al.  Convergence of Rational Interpolants ∗ , 1996 .

[13]  Hans Wallin,et al.  Potential theory and approximation of analytic functions by rational interpolation , 1979 .

[14]  E. Hairer,et al.  Order stars and stability theorems , 1978 .

[15]  Richard S. Varga,et al.  On the zeros and poles of Padé approximants toez , 1975 .

[16]  P. Petrushev,et al.  Rational Approximation of Real Functions , 1988 .

[17]  D. Wulbert The Rational Approximation of Real Functions , 1978 .

[18]  Vilmos Totik,et al.  General Orthogonal Polynomials , 1992 .

[19]  R. S. Varga,et al.  On the zeros and poles of Padé approximants toez. III , 1978 .

[20]  D. Newman Approximation with rational functions , 1976 .

[21]  Padé tables of a class of entire functions , 1985 .

[22]  Franck Wielonsky A Rolle's theorem for real exponential polynomials in the complex domain , 2001 .

[23]  Vilmos Totik,et al.  Weighted Approximation with Varying Weight , 1994 .

[24]  ON THE CONVERGENCE OF PADÉ APPROXIMANTS IN CLASSES OF HOLOMORPHlC FUNCTIONS , 1981 .

[25]  Laurent Baratchart,et al.  A criterion for uniqueness of a critical point inH2 rational approximation , 1996 .

[26]  V V Vavilov,et al.  ON THE CONVERGENCE OF THE PADÉ APPROXIMANTS OF MEROMORPHIC FUNCTIONS , 1976 .

[27]  Johan Karlsson,et al.  Rational interpolation and best rational approximation , 1976 .

[28]  Hans Wallin,et al.  The convergence of padé approximants and the size of the power series coefficients , 1974 .

[29]  L. Trefethen The asymptotic accuracy of rational best approximations to ez on a disk , 1984 .

[30]  André Markoff Deux démonstrations de la convergence de certaines fractions continues , 1895 .

[31]  Laurent Baratchart,et al.  Rational Interpolation of the Exponential Function , 1995, Canadian Journal of Mathematics.

[32]  M. Gutknecht The multipoint Padé table and general recurrences for rational interpolation , 1993 .

[33]  R. Varga,et al.  On the zeros and poles of Padé approximants toez , 1975 .

[34]  A. Gončar,et al.  ON MARKOV'S THEOREM FOR MULTIPOINT PADÉ APPROXIMANTS , 1978 .

[35]  R. S. Varga,et al.  ON THE ZEROS AND POLES OF PADÉ APPROXIMANTS TO ez. II , 1977 .

[36]  C. Brezinski General orthogonal polynomials , 1980 .

[37]  Doron S. Lubinsky,et al.  Spurious Poles in Diagonal Rational Approximation , 1992 .