A physical compact model of DG MOSFET for mixed-signal circuit applications - part II: Parameter extraction

For pt. see ibid., vol. 50, no. 10, p. 2135 (2003). Based on the physical double-gate MOSFET model described in Part I, we present a systematic parameter extraction methodology that avoids parameter interdependence between different physical effects whenever possible. Several extraction schemes are compared for precise modeling of small-signal and large-signal characteristics. The physical model and the extraction methodology are verified through the reproduction of the simulated drain current, incremental drain resistance, and transconductance per unit current, which are parameters of particular interest to mixed-signal circuit designs.

[1]  Massimo Vanzi,et al.  A physically based mobility model for numerical simulation of nonplanar devices , 1988, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[2]  R. R. Siergiej,et al.  A novel method to characterize MOS transistors with mixed gate dielectric technologies , 1992 .

[3]  Peter J. Zdebel,et al.  Measurement of collector and emitter resistances in bipolar transistors , 1991 .

[4]  R. W. Coen,et al.  Velocity of surface carriers in inversion layers on silicon , 1980 .

[5]  Leathen Shi,et al.  High performance of planar double gate MOSFETs with thin backgate dielectrics , 2001, Device Research Conference. Conference Digest (Cat. No.01TH8561).

[6]  D. M. Kim,et al.  Photonic high-frequency capacitance-voltage characterization of interface states in metal-oxide-semiconductor capacitors , 2002 .

[7]  Michael S. Shur,et al.  New short-channel n-MOSFET current-voltage model in strong inversion and unified parameter extraction method , 1991 .

[8]  Robert W. Dutton,et al.  Impact of lateral source/drain abruptness on device performance , 2002 .

[9]  S. Selberherr Analysis and simulation of semiconductor devices , 1984 .

[10]  Keunwoo Kim,et al.  Double-gate CMOS: symmetrical- versus asymmetrical-gate devices , 2001 .

[11]  S. Takagi,et al.  On the universality of inversion layer mobility in Si MOSFET's: Part I-effects of substrate impurity concentration , 1994 .

[12]  J. Treichler,et al.  Triple-self-aligned, planar double-gate MOSFETs: devices and circuits , 2001, International Electron Devices Meeting. Technical Digest (Cat. No.01CH37224).

[13]  J. Woo,et al.  Advanced model and analysis of series resistance for CMOS scaling into nanometer regime. I. Theoretical derivation , 2002 .

[14]  Michael S. Shur,et al.  A unified current-voltage model for long-channel nMOSFETs , 1991 .

[15]  Y. Taur,et al.  A new 'shift and ratio' method for MOSFET channel-length extraction , 1992, IEEE Electron Device Letters.

[16]  Eugenio García Moreno,et al.  An Improved C∞-Continuous Small-Geometry MOSFET Modeling for Analog Applications , 1997 .

[17]  A. Richard Newton,et al.  Fast simulated diffusion: an optimization algorithm for multiminimum problems and its application to MOSFET model parameter extraction , 1992, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[18]  Jason C. S. Woo,et al.  Advanced model and analysis of series resistance for CMOS scaling into nanometer regime. II. Quantitative analysis , 2002 .