Journal of Statistical Mechanics: Theory and Experiment

Many interesting divergence measures between conjugate ensembles of nonequilibrium trajectories can be experimentally determined from the work distribution of the process. Herein, we review the statistical and physical significance of several of these measures, in particular the relative entropy (dissipation), Jeffreys divergence (hysteresis), Jensen–Shannon divergence (time-asymmetry), Chernoff divergence (work cumulant generating function), and Rényi divergence.

[1]  Alexander N. Gorban,et al.  Entropy: The Markov Ordering Approach , 2010, Entropy.

[2]  J. Parrondo,et al.  Entropy production and the arrow of time , 2009, 0904.1573.

[3]  Christopher Jarzynski,et al.  Illustrative example of the relationship between dissipation and relative entropy. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[4]  G. Crooks,et al.  Length of time's arrow. , 2008, Physical review letters.

[5]  J. Parrondo,et al.  The “footprints” of irreversibility , 2008, 0805.4703.

[6]  Luca Peliti,et al.  On the work-Hamiltonian connection in manipulated systems , 2008 .

[7]  D. Andrieux,et al.  Thermodynamic time asymmetry in non-equilibrium fluctuations , 2007, 0710.3646.

[8]  J. Parrondo,et al.  Dissipation: the phase-space perspective. , 2007, Physical review letters.

[9]  C. Jarzynski Rare events and the convergence of exponentially averaged work values. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[10]  Thomas M. Cover,et al.  Elements of information theory (2. ed.) , 2006 .

[11]  C. Jarzynski,et al.  Verification of the Crooks fluctuation theorem and recovery of RNA folding free energies , 2005, Nature.

[12]  U. Seifert Entropy production along a stochastic trajectory and an integral fluctuation theorem. , 2005, Physical review letters.

[13]  P. Gaspard Fluctuation theorem for nonequilibrium reactions. , 2004, The Journal of chemical physics.

[14]  I. Vajda,et al.  A new class of metric divergences on probability spaces and its applicability in statistics , 2003 .

[15]  Dominik Endres,et al.  A new metric for probability distributions , 2003, IEEE Transactions on Information Theory.

[16]  I. Tinoco,et al.  Equilibrium Information from Nonequilibrium Measurements in an Experimental Test of Jarzynski's Equality , 2002, Science.

[17]  C. Maes,et al.  Time-Reversal and Entropy , 2002, cond-mat/0202501.

[18]  Xiaoxin Liaot,et al.  of Chaotic Systems , 2002 .

[19]  G. Hummer Fast-growth thermodynamic integration: Error and efficiency analysis , 2001 .

[20]  Don H. Johnson,et al.  Symmetrizing the Kullback-Leibler Distance , 2001 .

[21]  H. Qian,et al.  Relative entropy: free energy associated with equilibrium fluctuations and nonequilibrium deviations. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  C. Jarzynski,et al.  Exactly solvable model illustrating far-from-equilibrium predictions , 1999, cond-mat/9912121.

[23]  J. Lebowitz,et al.  A Gallavotti–Cohen-Type Symmetry in the Large Deviation Functional for Stochastic Dynamics , 1998, cond-mat/9811220.

[24]  G. Crooks Nonequilibrium Measurements of Free Energy Differences for Microscopically Reversible Markovian Systems , 1998 .

[25]  C. Jarzynski Nonequilibrium Equality for Free Energy Differences , 1996, cond-mat/9610209.

[26]  Gerhard Hummer,et al.  Calculation of free‐energy differences from computer simulations of initial and final states , 1996 .

[27]  C. Beck,et al.  Thermodynamics of chaotic systems , 1993 .

[28]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[29]  Jianhua Lin,et al.  Divergence measures based on the Shannon entropy , 1991, IEEE Trans. Inf. Theory.

[30]  C. Tsallis Possible generalization of Boltzmann-Gibbs statistics , 1988 .

[31]  Timothy R. C. Read,et al.  Multinomial goodness-of-fit tests , 1984 .

[32]  S. M. Ali,et al.  A General Class of Coefficients of Divergence of One Distribution from Another , 1966 .

[33]  T. Morimoto Markov Processes and the H -Theorem , 1963 .

[34]  A. Rényi On Measures of Entropy and Information , 1961 .

[35]  H. Chernoff A Measure of Asymptotic Efficiency for Tests of a Hypothesis Based on the sum of Observations , 1952 .

[36]  R. A. Leibler,et al.  On Information and Sufficiency , 1951 .

[37]  H. Jeffreys The Theory of Probability , 1896 .