Domain Adaptation for Parsing

We compare two different methods in domain adaptation applied to constituent parsing: parser combination and cotraining, each used to transfer information from the source domain of news to the target domain of natural dialogs, in a setting without annotated data. Both methods outperform the baselines and reach similar results. Parser combination profits most from the large amounts of training data combined with a robust probability model. Co-training, in contrast, relies on a small set of higher quality data.

[1]  Mitchell P. Marcus,et al.  On the parameter space of generative lexicalized statistical parsing models , 2004 .

[2]  Eugene Charniak,et al.  Automatic Domain Adaptation for Parsing , 2010, NAACL.

[3]  Helmut Schmid,et al.  LoPar: Design and Implementation , 2000 .

[4]  Ari Rappoport,et al.  Self-Training for Enhancement and Domain Adaptation of Statistical Parsers Trained on Small Datasets , 2007, ACL.

[5]  Gwyneth Doherty-Sneddon,et al.  THE HCRC MAP TASK CORPUS: Natural Dialogue For Speech Recognition , 1993, HLT.

[6]  Dan Klein,et al.  Learning Accurate, Compact, and Interpretable Tree Annotation , 2006, ACL.

[7]  Matthias Scheutz,et al.  The Indiana “Cooperative Remote Search Task” (CReST) Corpus , 2010, LREC.

[8]  Hitoshi Isahara,et al.  Learning Reliable Information for Dependency Parsing Adaptation , 2008, COLING.

[9]  Eugene Charniak,et al.  Reranking and Self-Training for Parser Adaptation , 2006, ACL.

[10]  Beatrice Santorini,et al.  Building a Large Annotated Corpus of English: The Penn Treebank , 1993, CL.

[11]  John Blitzer,et al.  Frustratingly Hard Domain Adaptation for Dependency Parsing , 2007, EMNLP.

[12]  Michael Collins,et al.  Three Generative, Lexicalised Models for Statistical Parsing , 1997, ACL.

[13]  Avrim Blum,et al.  The Bottleneck , 2021, Monopsony Capitalism.

[14]  Sebastian Riedel,et al.  The CoNLL 2007 Shared Task on Dependency Parsing , 2007, EMNLP.

[15]  Thorsten Brants,et al.  TnT – A Statistical Part-of-Speech Tagger , 2000, ANLP.

[16]  Dan Klein,et al.  Accurate Unlexicalized Parsing , 2003, ACL.

[17]  Hal Daumé,et al.  Frustratingly Easy Domain Adaptation , 2007, ACL.

[18]  Daisuke Kawahara,et al.  Learning Reliability of Parses for Domain Adaptation of Dependency Parsing , 2008, IJCNLP.

[19]  Michael Collins,et al.  Head-Driven Statistical Models for Natural Language Parsing , 2003, CL.

[20]  Yan Zhou,et al.  Enhancing Supervised Learning with Unlabeled Data , 2000, ICML.

[21]  Jun'ichi Tsujii,et al.  Dependency Parsing and Domain Adaptation with LR Models and Parser Ensembles , 2007, EMNLP.

[22]  Giuseppe Attardi,et al.  Dependency Parsing Domain Adaptation using Transductive SVM , 2012, EACL 2012.

[23]  Walter Daelemans,et al.  Improving Accuracy in word class tagging through the Combination of Machine Learning Systems , 2001, CL.

[24]  Kenji Sagae Self-Training without Reranking for Parser Domain Adaptation and Its Impact on Semantic Role Labeling , 2010 .

[25]  Christopher D. Manning,et al.  Hierarchical Bayesian Domain Adaptation , 2009, NAACL.