Performance Improvement of Spaceborne SAR Using Antenna Pattern Synthesis Based on Quantum-Behaved Particle Swarm Optimization

This study improves the performance of a spaceborne synthetic aperture radar (SAR) system using an antenna mask design method and antenna pattern synthesis algorithms for an active phased array SAR system. The SAR antenna is an important component that affects the SAR system performance because it is closely related to the antenna pattern. This study proposes a method for antenna mask design that is based on several previous studies as well as the antenna pattern synthesis algorithm, which is based on quantum-behaved particle swarm optimization (QPSO) for an active phased array SAR system. The performance of the designed antenna masks and synthesized patterns demonstrate that the proposed mask design method and antenna pattern synthesis algorithm based on QPSO can be used to improve the SAR system performance for spaceborne applications.

[1]  C. Heer,et al.  SAR antenna beam pattern optimisation , 2000, IGARSS 2000. IEEE 2000 International Geoscience and Remote Sensing Symposium. Taking the Pulse of the Planet: The Role of Remote Sensing in Managing the Environment. Proceedings (Cat. No.00CH37120).

[2]  S. H. Lim,et al.  AZIMUTH BEAM PATTERN SYNTHESIS FOR AIR-BORNE SAR SYSTEM OPTIMIZATION , 2010 .

[3]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[4]  Andrea Torre,et al.  The role of performance modelling in active phased array SAR , 2007, 2007 IEEE International Geoscience and Remote Sensing Symposium.

[5]  Minjeong Kang,et al.  Antenna Mask Design for SAR Performance Optimization , 2009, IEEE Geoscience and Remote Sensing Letters.

[6]  Robert J. Mailloux,et al.  Phased Array Antenna Handbook , 1993 .

[7]  Wenbo Xu,et al.  Particle swarm optimization with particles having quantum behavior , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[8]  Noh-Hoon Myung,et al.  Azimuth Beam Pattern Synthesis for Airborne SAR System Optimization , 2010 .

[9]  R. Bansal,et al.  Antenna theory; analysis and design , 1984, Proceedings of the IEEE.

[10]  William A. Imbriale,et al.  Space Antenna Handbook , 2012 .

[11]  Robert J. Mailloux,et al.  Electronically Scanned Arrays , 2007, Electronically Scanned Arrays.

[12]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[13]  Choi-Hong Lai,et al.  Particle Swarm Optimisation: Classical and Quantum Perspectives , 2011 .

[14]  Noh-Hoon Myung,et al.  An Optimal Antenna Pattern Synthesis for Active Phased Array SAR Based on Particle Swarm Optimization and Adaptive Weighting Factor , 2009 .

[15]  Sergio Barbarossa,et al.  An antenna pattern synthesis technique for spaceborne SAR performance optimization , 1991, IEEE Trans. Geosci. Remote. Sens..

[16]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[17]  Sergio Barbarossa,et al.  Optimal beamforming for range-doppler ambiguity suppression in squinted SAR systems , 2011, 2011 4th IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP).

[18]  Xiaojun Wu,et al.  Quantum-Behaved Particle Swarm Optimization: Analysis of Individual Particle Behavior and Parameter Selection , 2012, Evolutionary Computation.

[19]  Liu Xiao,et al.  Optimum design of antenna pattern for spaceborne SAR performance using improved NSGA-II , 2007, 2007 IEEE International Geoscience and Remote Sensing Symposium.

[20]  Pasquale Capece and,et al.  13. SAR Antennas , 2012 .

[21]  Sang-Ryool Lee Overview of KOMPSAT-5 program, mission, and system , 2010, 2010 IEEE International Geoscience and Remote Sensing Symposium.

[22]  Andrea Torre,et al.  In-Orbit Antenna Pattern Extraction Method for Active Phased-Array SAR Antennas , 2016, IEEE Antennas and Wireless Propagation Letters.

[23]  P. Angeletti,et al.  Aperiodic Arrays for Spaceborne SAR Applications , 2012, IEEE Transactions on Antennas and Propagation.