Electrical properties and active solute transport in rat small intestine

SummaryThe transepithelial resistance, the cell membrane resistance and the ratio of resistances of the serosal (baso-lateral) to the mucosal (brush border) cell membrane were measured in rat duodenum, jejunum and ileum by means of microelectrode techniques. These measured values were not affected in the presence of actively transported solutes in the mucosal bathing fluid.Contribution of an electrical conductance through the extracellular shunt pathway to the total transepithelial conductance was quantitatively estimated using an electrically equivalent circuit analysis. These values estimated in respective tissues of small intestine were approx. 95% of the total transepithelial conductance, remaining unaffected by an active solute transport.From these data, the changes in emf's of the mucosal and serosal membrane induced byd-glucose or glycine were separately evaluated.

[1]  P. Claude,et al.  FRACTURE FACES OF ZONULAE OCCLUDENTES FROM "TIGHT" AND "LEAKY" EPITHELIA , 1973, The Journal of cell biology.

[2]  D. Erlij,et al.  Transport pathways in biological membranes. , 1974, Annual review of physiology.

[3]  R. Shoemaker,et al.  Microelectrode studies of fundic gastric mucosa: Cellular coupling and shunt conductance , 2005, The Journal of Membrane Biology.

[4]  S. I. Helman,et al.  Edge damage effect on measurements of urea and sodium flux in frog skin. , 1974, The American journal of physiology.

[5]  E. Wright,et al.  Short‐circuit current and solute transfer by rat jejunum. , 1965, The Journal of physiology.

[6]  E. Frömter The route of passive ion movement through the epithelium ofNecturus gallbladder , 2005, The Journal of Membrane Biology.

[7]  A. Irimajiri,et al.  Electrical properties and active solute transport in rat small intestine , 1977, The Journal of Membrane Biology.

[8]  S. Schultz,et al.  Ion Transport in Isolated Rabbit Ileum : II. The interaction between active sodium and active sugar transport , 1964 .

[9]  A. Irimajiri,et al.  Permeability properties and intracellular ion concentrations of epithelial cells in rat duodenum. , 1976, Biochimica et biophysica acta.

[10]  Werner R. Loewenstein,et al.  STUDIES ON AN EPITHELIAL (GLAND) CELL JUNCTION I. Modifications of Surface Membrane Permeability , 1964 .

[11]  S. Schultz,et al.  Properties of the passive conductance pathway acrossin vitro rat jejunum , 2005, The Journal of Membrane Biology.

[12]  S. Schultz,et al.  Ion Transport in Isolated Rabbit Ileum , 1964, The Journal of general physiology.

[13]  W. Loewenstein,et al.  STUDIES ON AN EPITHELIAL (GLAND) CELL JUNCTION. II. SURFACE STRUCTURE. , 1964 .

[14]  S. Schultz,et al.  Ionic Conductances of Extracellular Shunt Pathway in Rabbit Ileum , 1972, The Journal of general physiology.

[15]  G. Kidder,et al.  Edge damage effect in in vitro frog skin preparations. , 1968, The American journal of physiology.

[16]  W. Loewenstein,et al.  Intercellular Communication: Renal, Urinary Bladder, Sensory, and Salivary Gland Cells , 1965, Science.

[17]  M. Field,et al.  Ion transport in rabbit ileal mucosa. IV. Bicarbonate secretion. , 1973, The American journal of physiology.

[18]  Y. Okada,et al.  Studies on the origin of the tip potential of glass microelectrode , 1976, Biophysics of structure and mechanism.

[19]  T. Clarkson The Transport of Salt and Water across Isolated Rat Ileum , 1967, The Journal of general physiology.

[20]  M. Walser Role of edge damage in sodium permeability of toad bladder and a means of avoiding it. , 1970, The American journal of physiology.

[21]  Y. Okada,et al.  pH-sensitive glass microelectrodes and intracellular pH measurements , 1976, Biophysics of structure and mechanism.

[22]  S. Schultz,et al.  ION transport by mammalian small intestine. , 1974, Annual review of physiology.

[23]  F. Silverblatt,et al.  GAP JUNCTIONS OCCUR IN VERTEBRATE RENAL PROXIMAL TUBULE CELLS , 1970, The Journal of cell biology.

[24]  S. Schultz,et al.  ION TRANSPORT IN ISOLATED RABBIT ILEUM. I. SHORT-CIRCUIT CURRENT AND NA FLUXES. , 1964 .

[25]  E Frömter,et al.  Route of passive ion permeation in epithelia. , 1972, Nature: New biology.

[26]  J. White,et al.  Effect of transported solutes on membrane potentials in bullfrog small intestine. , 1971, The American journal of physiology.

[27]  A. Blum,et al.  Electrical properties of isolated cells of Necturus gastric mucosa. , 1971, Biochimica et biophysica acta.

[28]  Y. Okada,et al.  Effects of potassium ions and sodium ions on membrane potential of epithelial cells in rat duodenum. , 1975, Biochimica et biophysica acta.

[29]  Ussing Hh,et al.  NATURE OF SHUNT PATH AND ACTIVE SODIUM TRANSPORT PATH THROUGH FROG SKIN EPITHELIUM. , 1964 .

[30]  W. Loewenstein,et al.  PERMEABILITY OF MEMBRANE JUNCTIONS * , 1966, Annals of the New York Academy of Sciences.

[31]  T. Asano METABOLIC DISTURBANCES AND SHORT-CIRCUIT CURRENT ACROSS INTESTINAL WALL OF RAT. , 1964, The American journal of physiology.

[32]  S. Schultz,et al.  Studies on the Electrical Potential Profile across Rabbit Ileum , 1971, The Journal of general physiology.

[33]  I. Mccoll,et al.  Ion transport in rabbit ileal mucosa. I. Na and Cl fluxes and short-circuit current. , 1971, The American journal of physiology.

[34]  S. I. Helman,et al.  In vitro Techniques for Avoiding Edge Damage in Studies of Frog Skin , 1971, Science.

[35]  Juliane Maries Vej,et al.  Effects of sugar and amino acid transport on transepithelial fluxes of sodium and chloride of short circuited rat jejunum , 1972, The Journal of physiology.

[36]  L. Reuss,et al.  Passive Electrical Properties of Toad Urinary Bladder Epithelium , 1974, The Journal of general physiology.