Shift- and scale-invariant anamorphic Fourier correlator
暂无分享,去创建一个
[1] Gary J. Swanson,et al. Broad-source fringes in grating and conventional interferometers , 1984 .
[2] C H Anderson,et al. Spatially inhomogeneous scaled transforms for vision and pattern recognition. , 1981, Optics letters.
[3] David R. Smith,et al. A Threshold Logic Network for Shape Invariance , 1967, IEEE Trans. Electron. Comput..
[4] C. R. Carlson,et al. Theory of shape-invariant imaging systems. , 1984, Journal of the Optical Society of America. A, Optics and image science.
[5] A. B. Vander Lugt,et al. Signal detection by complex spatial filtering , 1964, IEEE Trans. Inf. Theory.
[6] D. Casasent,et al. Position, rotation, and scale invariant optical correlation. , 1976, Applied optics.
[7] T. Szoplik,et al. Nonsymmetric Fourier transforming with an anamorphic system. , 1984, Applied optics.
[8] Carl F. R. Weiman,et al. Logarithmic spiral grids for image-processing and display , 1979 .
[9] C Braccini. Scale-invariant image processing by means of scaled transforms or form-invariant, linear shift-variant filters. , 1983, Optics letters.
[10] Donald L. Dietmeyer,et al. Identification of Symmetry, Redundancy and Equivalence of Boolean Functions , 1967, IEEE Trans. Electron. Comput..
[11] H. Arsenault,et al. Rotation-variant optical data processing using the 2-D nonsymmetric Fourier transform. , 1985, Applied optics.
[12] H. Arsenault,et al. Nonsymmetrical Fourier-transform hologram , 1984 .