CONTENT 2018

Data, to an increasing degree, is not used directly as content represented in documents, but it serves as a foundation for content tailored for and delivered to users working in different and varying contexts. To this end, the actual content is dynamically assembled from base data with respect to a certain context. This is particularly true for content management applications, e.g., for websites that are targeted at a user’s context. The notion of context comprises various dimensions of parameters like language, location, time, user, and user’s device. Most data modeling languages, including programming languages, are not well prepared to cope with variants of content, though. They are designed to manage universal, consistent, and complete sets of data. The Minimalistic Meta Modeling Language (M3L) as a language for content representation has proven particularly useful for modeling content in context. Towards an operational M3L execution environment, we are researching data schemas to efficiently store and utilize M3L models. Such schemas serve as a testbed to discuss context-aware data representation and retrieval in this paper. This is done by expressing contextaware models, in particular M3L statements, by means of traditional persistence technology. Keywords-data modeling; content modeling; context-aware data modeling; content; content management; context.

[1]  Fernando Diaz-de-Maria,et al.  Low-complexity motion-based saliency map estimation for perceptual video coding , 2011, CONATEL 2011.

[2]  J. Brownstein,et al.  Using search queries for malaria surveillance, Thailand , 2013, Malaria Journal.

[3]  Seiichi Gohshi,et al.  Image Quality of a Smartphone Display with Super-Resolution , 2016 .

[4]  Alexander Refsum Jensenius,et al.  Some Video Abstraction Techniques for Displaying Body Movement in Analysis and Performance , 2012, Leonardo.

[5]  Alessandro Micarelli,et al.  Infoweb: An adaptive information filtering system for the cultural heritage domain , 2003, Appl. Artif. Intell..

[6]  Alessandro Micarelli,et al.  Anatomy and Empirical Evaluation of an Adaptive Web-Based Information Filtering System , 2004, User Modeling and User-Adapted Interaction.

[7]  Alexander Refsum Jensenius,et al.  Action-sound : developing methods and tools to study music-related body movement , 2007 .

[8]  Hesham Farouk,et al.  Effective and Efficient Video Summarization Approach for Mobile Devices , 2016, Int. J. Interact. Mob. Technol..

[9]  Jaan Altosaar,et al.  Sonification of fish movement using pitch mesh pairs , 2015, NIME.

[10]  Colin Doutre,et al.  HEVC: The New Gold Standard for Video Compression: How Does HEVC Compare with H.264/AVC? , 2012, IEEE Consumer Electronics Magazine.

[11]  Panos Nasiopoulos,et al.  Visual color difference evaluation of standard color pixel representations for high dynamic range video compression , 2017, 2017 25th European Signal Processing Conference (EUSIPCO).

[12]  John D. Burger,et al.  Discriminating Gender on Twitter , 2011, EMNLP.

[13]  Quoc V. Le,et al.  Distributed Representations of Sentences and Documents , 2014, ICML.

[14]  Gabriele Taentzer,et al.  A Generic Architecture Supporting Context-Aware Data and Transaction Management for Mobile Applications , 2016, 2016 IEEE/ACM International Conference on Mobile Software Engineering and Systems (MOBILESoft).

[15]  Ki-Joune Li,et al.  Automatic geotagging and querying of indoor videos , 2013, ISA '13.

[16]  José María Martínez Sanchez,et al.  A Framework for Scalable Summarization of Video , 2010, IEEE Transactions on Circuits and Systems for Video Technology.

[17]  Panos Nasiopoulos,et al.  Optimizing Non Constant Luminance into Constant Luminance for High Dynamic Range Video Distribution , 2017, 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[18]  Sung Wook Baik,et al.  Efficient visual attention based framework for extracting key frames from videos , 2013, Signal Process. Image Commun..

[19]  Anirban Dutta,et al.  Identifying the causal relationship between social media content of a Bollywood movie and its box-office success - a text mining approach , 2017, Int. J. Bus. Inf. Syst..

[20]  Ananda S. Chowdhury,et al.  Scalable Video Summarization Using Skeleton Graph and Random Walk , 2014, 2014 22nd International Conference on Pattern Recognition.

[21]  Hesham Farouk,et al.  Context-Aware Joint Video Summarization and Streaming (CVSS) Approach , 2016, 2016 IEEE International Symposium on Multimedia (ISM).

[22]  Klaus U. Schulz,et al.  The BIRD Numbering Scheme for XML and Tree Databases - Deciding and Reconstructing Tree Relations Using Efficient Arithmetic Operations , 2005, XSym.

[23]  R. Michael Winters,et al.  A SONIFICATION TOOL FOR THE ANALYSIS OF LARGE DATABASES OF EXPRESSIVE GESTURE , 2012 .

[24]  Tim Pohle Real-Time Synaesthetic Sonification of Traveling Landscapes , 2008 .

[25]  David M. Pennock,et al.  Predicting consumer behavior with Web search , 2010, Proceedings of the National Academy of Sciences.

[26]  Seiichi Gohshi Limitation of Super Resolution Image Reconstruction , 2014 .

[27]  Gregory Ward Larson,et al.  LogLuv Encoding for Full-Gamut, High-Dynamic Range Images , 1998, J. Graphics, GPU, & Game Tools.

[28]  Sankar K. Pal,et al.  Video Summarization and Significance of Content: A Review , 2012 .

[29]  Yang Yi,et al.  Key frame extraction based on visual attention model , 2012, J. Vis. Commun. Image Represent..

[30]  Beat Signer,et al.  The Context Modelling Toolkit: A Unified Multi-layered Context Modelling Approach , 2017, PACMHCI.

[31]  N. Askitas,et al.  Google Econometrics and Unemployment Forecasting , 2009, SSRN Electronic Journal.

[32]  F. Albu,et al.  INTELLIGENT TUTOR FOR FIRST GRADE CHILDREN’S HANDWRITING APPLICATION , 2015 .

[33]  Aron Culotta,et al.  Predicting the Demographics of Twitter Users from Website Traffic Data , 2015, AAAI.

[34]  Ambuj K. Singh,et al.  GPOP: Scalable Group-level Popularity Prediction for Online Content in Social Networks , 2017, WWW.

[35]  Harry W. Agius,et al.  Video summarisation: A conceptual framework and survey of the state of the art , 2008, J. Vis. Commun. Image Represent..

[36]  Matthew Wright,et al.  Supporting the Sound Description Interchange Format in the Max/MSP Environment , 1999, ICMC.

[37]  T. H. Kolbe,et al.  OpenGIS City Geography Markup Language (CityGML) Encoding Standard, Version 1.0.0 , 2008 .

[38]  Roger Zimmermann,et al.  Design and implementation of geo-tagged video search framework , 2010, J. Vis. Commun. Image Represent..

[39]  Hassan Farsi,et al.  Scalable video summarization via sparse dictionary learning and selection simultaneously , 2017, Multimedia tools and applications.

[40]  Davide Rocchesso,et al.  The Sonification Handbook , 2011 .

[41]  M. de Rijke,et al.  Predicting IMDB Movie Ratings Using Social Media , 2012, ECIR.

[42]  M. Shamim Hossain,et al.  Relational User Attribute Inference in Social Media , 2015, IEEE Transactions on Multimedia.

[43]  Muhammad Shakir,et al.  Video Summarization: Techniques and Classification , 2012, ICCVG.

[44]  J. MacQueen Some methods for classification and analysis of multivariate observations , 1967 .

[45]  Carlo Curino,et al.  A data-oriented survey of context models , 2007, SGMD.

[46]  Kristofer Dovstam,et al.  Luma Adjustment for High Dynamic Range Video , 2016, 2016 Data Compression Conference (DCC).

[47]  Regunathan Radhakrishnan,et al.  A Unified Framework for Video Summarization, Browsing & Retrieval: with Applications to Consumer and Surveillance Video , 2005 .

[48]  Marcelo M. Wanderley,et al.  The Musical Significance of Clarinetists' Ancillary Gestures: An Exploration of the Field , 2005 .

[49]  Taoran Lu,et al.  ITP Colour Space and Its Compression Performance for High Dynamic Range and Wide Colour Gamut Video Distribution , 2016 .

[50]  M. Santamaria,et al.  A comparison of block-matching motion estimation algorithms , 2012, 2012 7th Colombian Computing Congress (CCC).

[51]  Ki-Joune Li,et al.  Geo-coding scheme for multimedia in indoor space , 2013, SIGSPATIAL/GIS.

[52]  Jeroen Hubert Stessen,et al.  Deploying Wide Color Gamut and High Dynamic Range in HD and UHD , 2015 .

[53]  Yun Fu,et al.  Age Synthesis and Estimation via Faces: A Survey , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[54]  Heiko Schwarz,et al.  Overview of the Scalable Video Coding Extension of the H.264/AVC Standard , 2007, IEEE Transactions on Circuits and Systems for Video Technology.

[55]  Alexander Refsum Jensenius,et al.  Sonifying the Shape of Human Body Motion using Motiongrams , 2013 .

[56]  Brendan T. O'Connor,et al.  From Tweets to Polls: Linking Text Sentiment to Public Opinion Time Series , 2010, ICWSM.

[57]  Ba Tu Truong,et al.  Video abstraction: A systematic review and classification , 2007, TOMCCAP.

[58]  Giorgio Orsi,et al.  Context Modelling and Context-Aware Querying - (Can Datalog Be of Help?) , 2010, Datalog.

[59]  A. Robertson The CIE 1976 Color-Difference Formulae , 1977 .

[60]  Torsten Schmidt,et al.  Forecasting Private Consumption: Survey-Based Indicators vs. Google Trends , 2009 .

[61]  Raheela Asif,et al.  Financial Market Prediction using Google Trends , 2017 .

[62]  Michael Elad,et al.  Fast and Robust Multi-Frame Super-Resolution , 2004, IEEE Transactions on Image Processing.

[63]  Nikos Paragios,et al.  Handbook of Mathematical Models in Computer Vision , 2005 .

[64]  Hans-Werner Sehring,et al.  Conceptual Content Modeling and Management , 2003, Ershov Memorial Conference.

[65]  Marcus Specht,et al.  Personalization and Context Management , 2005, User Modeling and User-Adapted Interaction.

[66]  Jenny Benois-Pineau,et al.  Scalable video summarization of cultural video documents in cross-media space based on data cube approach , 2014, 2014 12th International Workshop on Content-Based Multimedia Indexing (CBMI).

[67]  Sung Wook Baik,et al.  Feature aggregation based visual attention model for video summarization , 2014, Comput. Electr. Eng..

[68]  Seiichi Gohshi,et al.  Subjective assessment of super-resolution 4K video using paired comparison , 2014, 2014 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS).

[69]  Seiichi Gohshi A new signal processing method for video: reproduce the frequency spectrum exceeding the Nyquist frequency , 2012, MMSys '12.

[70]  Panos Nasiopoulos,et al.  Demystifying High-Dynamic-Range Technology: A new evolution in digital media. , 2015, IEEE Consumer Electronics Magazine.

[71]  Jianle Chen,et al.  Overview of SHVC: Scalable Extensions of the High Efficiency Video Coding Standard , 2016, IEEE Transactions on Circuits and Systems for Video Technology.

[72]  Symeon Papavassiliou,et al.  A holistic approach for personalization, relevance feedback & recommendation in enriched multimedia content , 2016, Multimedia Tools and Applications.

[73]  Hamid Pirahesh,et al.  Data Cube: A Relational Aggregation Operator Generalizing Group-By, Cross-Tab, and Sub-Totals , 1996, Data Mining and Knowledge Discovery.

[74]  Chantal Taconet,et al.  A Data Model for Context-aware Deployment of Component-based Applications onto Distributed Systems , 2022 .

[75]  John S. Brownstein,et al.  Using electronic health records and Internet search information for accurate influenza forecasting , 2017, BMC Infectious Diseases.

[76]  Shuji Hashimoto,et al.  EyesWeb: Toward Gesture and Affect Recognition in Interactive Dance and Music Systems , 2000, Computer Music Journal.

[77]  Kenneth C. Laudon,et al.  Information technology and society , 1994 .

[78]  Jeremy Ginsberg,et al.  Detecting influenza epidemics using search engine query data , 2009, Nature.

[79]  Tania Pouli,et al.  Evaluation of color encodings for high dynamic range pixels , 2015, Electronic Imaging.

[80]  Andrey Norkin Fast Algorithm for HDR Color Conversion , 2016, 2016 Data Compression Conference (DCC).

[81]  William T. Freeman,et al.  Example-Based Super-Resolution , 2002, IEEE Computer Graphics and Applications.

[82]  Wencheng Wu,et al.  The CIEDE2000 color-difference formula: Implementation notes, supplementary test data, and mathematical observations , 2005 .

[83]  Jiebo Luo,et al.  Towards Scalable Summarization of Consumer Videos Via Sparse Dictionary Selection , 2012, IEEE Transactions on Multimedia.

[84]  L. R. Rabiner,et al.  A comparative study of several dynamic time-warping algorithms for connected-word recognition , 1981, The Bell System Technical Journal.

[85]  G. Marino,et al.  The UPIC System: Origins and Innovations , 1993 .