A new convective adjustment scheme. Part I: Observational and theoretical basis

Le nouveau schema propose repose sur la relaxation simultanee des champs de t et d'humidite vers les structures thermodynamiques observees en quasi-equilibre, avec un temps de relaxation de l'ordre de 2 heures. Des schemas separes sont employes pour la convection profonde et pour celle non precipitante

[1]  A. Betts,et al.  A new convective adjustment scheme. Part II: Single column tests using GATE wave, BOMEX, ATEX and arctic air‐mass data sets , 1986 .

[2]  A. Betts Mixing Line Analysis of Clouds and Cloudy Boundary Layers , 1985 .

[3]  A. Betts Boundary Layer Thermodynamics of a High Plains Severe Storm , 1984 .

[4]  G. M. Barnes,et al.  The Environment of Fast- and Slow-Moving Tropical Mesoscale Convective Cloud Lines , 1984 .

[5]  A. Betts Thermodynamics of Mixed Stratocumulus Layers: Saturation Point Budgets , 1983 .

[6]  W. Frank,et al.  The Cumulus Parameterization Problem , 1983 .

[7]  A. Betts Cloud Thermodynamic Models in Saturation Point Coordinates , 1982 .

[8]  A. Betts Saturation Point Analysis of Moist Convective Overturning , 1982 .

[9]  Stephen J. Lord,et al.  Interaction of a Cumulus Cloud Ensemble with the Large-Scale Environment. Part III: Semi-Prognostic Test of the Arakawa-Schubert Cumulus Parameterization , 1982 .

[10]  A. Betts,et al.  Convection in GATE , 1981 .

[11]  A. Arakawa,et al.  Interaction of a Cumulus Cloud Ensemble with the Large-Scale Environment. Part II , 1980 .

[12]  Edward J. Zipser,et al.  Cumulonimbus Vertical Velocity Events in GATE. Part II: Synthesis and Model Core Structure , 1980 .

[13]  J. Deardorff Cloud Top Entrainment Instability , 1980 .

[14]  D. Randall,et al.  Conditional instability of the first kind upside-down. [in stratocumulus clouds] , 1980 .

[15]  A. Betts,et al.  Model of the Thermodynamic Structure of the Trade-Wind Boundary Layer: Part I. Theoretical Formulation and Sensitivity Tests. , 1979 .

[16]  W. Frank,et al.  The Structure and Energetics of the Tropical Cyclone I. Storm Structure , 1977 .

[17]  A. Betts,et al.  Residual Erros of the VIZ Radiosonde Hygristor as Deduced from Observations of Sub-Cloud Layer Structure , 1974 .

[18]  H. Kuo Further Studies of the Parameterization of the Influence of Cumulus Convection on Large-Scale Flow , 1974 .

[19]  A. Arakawa,et al.  Interaction of a Cumulus Cloud Ensemble with the Large-Scale Environment, Part I , 1974 .

[20]  S. Esbensen,et al.  Determination of Bulk Properties of Tropical Cloud Clusters from Large-Scale Heat and Moisture Budgets , 1973 .

[21]  H. Riehl,et al.  Mass and Energy Transports in an Undisturbed Atlantic Trade-Wind Flow , 1973 .

[22]  A. Betts Non‐precipitating cumulus convection and its parameterization , 1973 .

[23]  K. Ooyama A Theory on Parameterization of Cumulus Convection , 1971 .

[24]  Syukuro Manabe,et al.  SIMULATED CLIMATOLOGY OF A GENERAL CIRCULATION MODEL WITH A HYDROLOGIC CYCLE II. ANALYSIS OF THE TROPICAL ATMOSPHERE , 1965 .

[25]  H. Kuo On Formation and Intensification of Tropical Cyclones Through Latent Heat Release by Cumulus Convection , 1965 .