Impact of acquisition and analysis strategies on cortical depth-dependent fMRI

[1]  Natalia Petridou,et al.  Laminar imaging of positive and negative BOLD in human visual cortex at 7T , 2018, NeuroImage.

[2]  Afonso C. Silva,et al.  Investigating the spatiotemporal characteristics of the deoxyhemoglobin-related and deoxyhemoglobin-unrelated functional hemodynamic response across cortical layers in awake marmosets , 2018, NeuroImage.

[3]  Laurentius Huber,et al.  Techniques for blood volume fMRI with VASO: From low-resolution mapping towards sub-millimeter layer-dependent applications , 2018, NeuroImage.

[4]  Kawin Setsompop,et al.  Pulse sequences and parallel imaging for high spatiotemporal resolution MRI at ultra-high field , 2017, NeuroImage.

[5]  Kâmil Uludag,et al.  Linking brain vascular physiology to hemodynamic response in ultra-high field MRI , 2017, NeuroImage.

[6]  Leonie Lampe,et al.  Lamina-dependent calibrated BOLD response in human primary motor cortex , 2016, NeuroImage.

[7]  Michael Breakspear,et al.  The spatiotemporal hemodynamic response function for depth-dependent functional imaging of human cortex , 2016, NeuroImage.

[8]  Kawin Setsompop,et al.  Rapid brain MRI acquisition techniques at ultra‐high fields , 2016, NMR in biomedicine.

[9]  Josef Pfeuffer,et al.  Optimization of simultaneous multislice EPI for concurrent functional perfusion and BOLD signal measurements at 7T , 2016, Magnetic resonance in medicine.

[10]  Lawrence L. Wald,et al.  Automatic cortical surface reconstruction of high-resolution T 1 echo planar imaging data , 2016, NeuroImage.

[11]  Markus Barth,et al.  A cortical vascular model for examining the specificity of the laminar BOLD signal , 2016, NeuroImage.

[12]  L. Lampe,et al.  Cortical laminar resting-state fluctuations scale with hypercapnic response , 2016 .

[13]  Jeff H. Duyn,et al.  Effects of magnetization transfer on T 1 contrast in human brain white matter , 2016, NeuroImage.

[14]  Shahin Nasr,et al.  Interdigitated Color- and Disparity-Selective Columns within Human Visual Cortical Areas V2 and V3 , 2016, The Journal of Neuroscience.

[15]  F. D. Lange,et al.  Selective Activation of the Deep Layers of the Human Primary Visual Cortex by Top-Down Feedback , 2016, Current Biology.

[16]  Thorsten Feiweier,et al.  Reducing sensitivity losses due to respiration and motion in accelerated echo planar imaging by reordering the autocalibration data acquisition , 2016, Magnetic resonance in medicine.

[17]  Klaas E. Stephan,et al.  A hemodynamic model for layered BOLD signals , 2016, NeuroImage.

[18]  Harald E. Möller,et al.  Functional cerebral blood volume mapping with simultaneous multi-slice acquisition , 2016, NeuroImage.

[19]  R. Goebel,et al.  Frequency preference and attention effects across cortical depths in the human primary auditory cortex , 2015, Proceedings of the National Academy of Sciences.

[20]  Lucy S. Petro,et al.  Contextual Feedback to Superficial Layers of V1 , 2015, Current Biology.

[21]  K. Uğurbil,et al.  fMRI: From Nuclear Spins to Brain Functions , 2015, Biological Magnetic Resonance.

[22]  Natalia Petridou,et al.  Cortical depth dependence of the BOLD initial dip and poststimulus undershoot in human visual cortex at 7 Tesla , 2015, Magnetic resonance in medicine.

[23]  Essa Yacoub,et al.  Sub-millimeter T2 weighted fMRI at 7 T: comparison of 3D-GRASE and 2D SE-EPI , 2015, Front. Neurosci..

[24]  Robert Turner,et al.  The Magnitude Point Spread Function is an Inadequate Measure of T2*-Blurring in EPI , 2015 .

[25]  Dominique Hasboun,et al.  Combined Laplacian-equivolumic model for studying cortical lamination with ultra high field MRI (7 T) , 2015, 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI).

[26]  Anna Devor,et al.  Quantifying the Microvascular Origin of BOLD-fMRI from First Principles with Two-Photon Microscopy and an Oxygen-Sensitive Nanoprobe , 2015, The Journal of Neuroscience.

[27]  Claudine Joëlle Gauthier,et al.  Cortical lamina-dependent blood volume changes in human brain at 7T , 2015, NeuroImage.

[28]  Christine L. Tardif,et al.  On the accuracy of T1 mapping: Searching for common ground , 2015, Magnetic resonance in medicine.

[29]  Robert Turner,et al.  Investigation of the neurovascular coupling in positive and negative BOLD responses in human brain at 7T , 2014, NeuroImage.

[30]  Rainer Goebel,et al.  Comparison of EPI distortion correction methods at 3T and 7T , 2014 .

[31]  Pierre-Louis Bazin,et al.  Anatomically motivated modeling of cortical laminae , 2014, NeuroImage.

[32]  Stephen D. Mayhew,et al.  Poststimulus undershoots in cerebral blood flow and BOLD fMRI responses are modulated by poststimulus neuronal activity , 2013, Proceedings of the National Academy of Sciences.

[33]  Rolf Gruetter,et al.  New Developments and Applications of the MP2RAGE Sequence - Focusing the Contrast and High Spatial Resolution R1 Mapping , 2013, PloS one.

[34]  R. Goebel,et al.  Cortical Depth Dependent Functional Responses in Humans at 7T: Improved Specificity with 3D GRASE , 2013, PloS one.

[35]  David G. Norris,et al.  Spin-echo fMRI: The poor relation? , 2012, NeuroImage.

[36]  Peter Jezzard,et al.  Correction of geometric distortion in fMRI data , 2012, NeuroImage.

[37]  Tobias Kober,et al.  SA2RAGE: A new sequence for fast B1+‐mapping , 2012, Magnetic resonance in medicine.

[38]  K. Uğurbil,et al.  Layer-Specific fMRI Reflects Different Neuronal Computations at Different Depths in Human V1 , 2012, PloS one.

[39]  R. Goebel,et al.  Mapping the Organization of Axis of Motion Selective Features in Human Area MT Using High-Field fMRI , 2011, PloS one.

[40]  Geoffrey L. Chupp,et al.  Pathways Activated during Human Asthma Exacerbation as Revealed by Gene Expression Patterns in Blood , 2011, PloS one.

[41]  Peter J. Koopmans,et al.  Multi-echo fMRI of the cortical laminae in humans at 7T , 2011, NeuroImage.

[42]  Lawrence L. Wald,et al.  Laminar analysis of 7T BOLD using an imposed spatial activation pattern in human V1 , 2010, NeuroImage.

[43]  D. Norris,et al.  Layer‐specific BOLD activation in human V1 , 2010, Human brain mapping.

[44]  A. Dale,et al.  Cortical depth-specific microvascular dilation underlies laminar differences in blood oxygenation level-dependent functional MRI signal , 2010, Proceedings of the National Academy of Sciences.

[45]  Lawrence L. Wald,et al.  Three dimensional echo-planar imaging at 7 Tesla , 2010, NeuroImage.

[46]  Peter Redgrave,et al.  Vascular Origins of BOLD and CBV fMRI Signals: Statistical Mapping and Histological Sections Compared , 2010, The open neuroimaging journal.

[47]  Kâmil Uludag,et al.  To dip or not to dip: Reconciling optical imaging and fMRI data , 2010, Proceedings of the National Academy of Sciences.

[48]  Tobias Kober,et al.  MP2RAGE, a self bias-field corrected sequence for improved segmentation and T1-mapping at high field , 2010, NeuroImage.

[49]  Uwe Aickelin,et al.  Tailored RF pulse for magnetization inversion at ultrahigh field , 2010, Magnetic resonance in medicine.

[50]  Yevgeniy B. Sirotin,et al.  Spatiotemporal precision and hemodynamic mechanism of optical point spreads in alert primates , 2009, Proceedings of the National Academy of Sciences.

[51]  Kamil Ugurbil,et al.  An integrative model for neuronal activity-induced signal changes for gradient and spin echo functional imaging , 2009, NeuroImage.

[52]  K. Uğurbil,et al.  Neural activity-induced modulation of BOLD poststimulus undershoot independent of the positive signal. , 2009, Magnetic resonance imaging.

[53]  Essa Yacoub,et al.  High-field fMRI unveils orientation columns in humans , 2008, Proceedings of the National Academy of Sciences.

[54]  N. Logothetis What we can do and what we cannot do with fMRI , 2008, Nature.

[55]  John Ashburner,et al.  A fast diffeomorphic image registration algorithm , 2007, NeuroImage.

[56]  Seong-Gi Kim,et al.  Neural Interpretation of Blood Oxygenation Level-Dependent fMRI Maps at Submillimeter Columnar Resolution , 2007, The Journal of Neuroscience.

[57]  Jonathan W. Peirce,et al.  PsychoPy—Psychophysics software in Python , 2007, Journal of Neuroscience Methods.

[58]  Tao Jin,et al.  Improved spatial localization of post-stimulus BOLD undershoot relative to positive BOLD , 2007, NeuroImage.

[59]  Junjie Liu,et al.  Laminar profiles of functional activity in the human brain , 2007, NeuroImage.

[60]  Guido Gerig,et al.  User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability , 2006, NeuroImage.

[61]  Nikos K Logothetis,et al.  Laminar specificity in monkey V1 using high-resolution SE-fMRI. , 2006, Magnetic resonance imaging.

[62]  Ping Wang,et al.  Cortical layer-dependent BOLD and CBV responses measured by spin-echo and gradient-echo fMRI: Insights into hemodynamic regulation , 2006, NeuroImage.

[63]  Steen Moeller,et al.  Combined imaging–histological study of cortical laminar specificity of fMRI signals , 2006, NeuroImage.

[64]  K. Uğurbil,et al.  The Spatial Dependence of the Poststimulus Undershoot as Revealed by High-Resolution BOLD- and CBV-Weighted fMRI , 2005, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[65]  Karl J. Friston,et al.  Unified segmentation , 2005, NeuroImage.

[66]  Mark W. Woolrich,et al.  Advances in functional and structural MR image analysis and implementation as FSL , 2004, NeuroImage.

[67]  R. Buxton,et al.  Modeling the hemodynamic response to brain activation , 2004, NeuroImage.

[68]  R. Douglas,et al.  Neuronal circuits of the neocortex. , 2004, Annual review of neuroscience.

[69]  Mark W. Woolrich,et al.  Multilevel linear modelling for FMRI group analysis using Bayesian inference , 2004, NeuroImage.

[70]  K. Uğurbil,et al.  Ultrahigh field magnetic resonance imaging and spectroscopy. , 2003, Magnetic resonance imaging.

[71]  Stephen M. Smith,et al.  General multilevel linear modeling for group analysis in FMRI , 2003, NeuroImage.

[72]  Stefan Skare,et al.  How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging , 2003, NeuroImage.

[73]  K. Uğurbil,et al.  Spin‐echo fMRI in humans using high spatial resolutions and high magnetic fields , 2003, Magnetic resonance in medicine.

[74]  L. Toth,et al.  How accurate is magnetic resonance imaging of brain function? , 2003, Trends in Neurosciences.

[75]  Afonso C. Silva,et al.  Laminar specificity of functional MRI onset times during somatosensory stimulation in rat , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[76]  Essa Yacoub,et al.  Zoomed Functional Imaging in the Human Brain at 7 Tesla with Simultaneous High Spatial and High Temporal Resolution , 2002, NeuroImage.

[77]  N. Logothetis,et al.  Ultra High-Resolution fMRI in Monkeys with Implanted RF Coils , 2002, Neuron.

[78]  R Todd Constable,et al.  Image distortion correction in EPI: Comparison of field mapping with point spread function mapping , 2002, Magnetic resonance in medicine.

[79]  Robin M Heidemann,et al.  Generalized autocalibrating partially parallel acquisitions (GRAPPA) , 2002, Magnetic resonance in medicine.

[80]  Robert Turner,et al.  Image Distortion Correction in fMRI: A Quantitative Evaluation , 2002, NeuroImage.

[81]  Stephen M. Smith,et al.  Temporal Autocorrelation in Univariate Linear Modeling of FMRI Data , 2001, NeuroImage.

[82]  R. Goebel,et al.  7T vs. 4T: RF power, homogeneity, and signal‐to‐noise comparison in head images , 2001, Magnetic resonance in medicine.

[83]  Karl J. Friston,et al.  Modelling Geometric Deformations in Epi Time Series , 2022 .

[84]  Peter Jezzard,et al.  Rapid T1 mapping using multislice echo planar imaging , 2001, Magnetic resonance in medicine.

[85]  Terry M. Peters,et al.  An inverse problem approach to the correction of distortion in EPI images , 2000, IEEE Transactions on Medical Imaging.

[86]  Dae-Shik Kim,et al.  High-resolution mapping of iso-orientation columns by fMRI , 2000, Nature Neuroscience.

[87]  P. Boesiger,et al.  SENSE: Sensitivity encoding for fast MRI , 1999, Magnetic resonance in medicine.

[88]  A Thron,et al.  MR blood oxygenation level-dependent signal differences in parenchymal and large draining vessels: implications for functional MR imaging. , 1999, AJNR. American journal of neuroradiology.

[89]  J R Reichenbach,et al.  Sub‐millimeter fMRI at 1.5 tesla: Correlation of high resolution with low resolution measurements , 1999, Journal of magnetic resonance imaging : JMRI.

[90]  C. Mathiesen,et al.  Modification of activity‐dependent increases of cerebral blood flow by excitatory synaptic activity and spikes in rat cerebellar cortex , 1998, The Journal of physiology.

[91]  B. Rosen,et al.  Dynamic functional imaging of relative cerebral blood volume during rat forepaw stimulation , 1998, Magnetic resonance in medicine.

[92]  T. L. Davis,et al.  Calibrated functional MRI: mapping the dynamics of oxidative metabolism. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[93]  K. Uğurbil,et al.  Experimental determination of the BOLD field strength dependence in vessels and tissue , 1997, Magnetic resonance in medicine.

[94]  P. Jezzard,et al.  Correction for geometric distortion in echo planar images from B0 field variations , 1995, Magnetic resonance in medicine.

[95]  Adrian T. Lee,et al.  Discrimination of Large Venous Vessels in Time‐Course Spiral Blood‐Oxygen‐Level‐Dependent Magnetic‐Resonance Functional Neuroimaging , 1995, Magnetic resonance in medicine.

[96]  Jean A. Tkach,et al.  2D and 3D high resolution gradient echo functional imaging of the brain: Venous contributions to signal in motor cortex studies , 1994, NMR in biomedicine.

[97]  P. Gowland,et al.  Accurate measurement of T1 in vivo in less than 3 seconds using echo‐planar imaging , 1993, Magnetic resonance in medicine.

[98]  D. Tank,et al.  4 Tesla gradient recalled echo characteristics of photic stimulation‐induced signal changes in the human primary visual cortex , 1993 .

[99]  Ravi S. Menon,et al.  Functional brain mapping by blood oxygenation level-dependent contrast magnetic resonance imaging. A comparison of signal characteristics with a biophysical model. , 1993, Biophysical journal.

[100]  R. Turner,et al.  Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[101]  R. Turner,et al.  Echo-planar imaging: magnetic resonance imaging in a fraction of a second. , 1991, Science.

[102]  J M Taveras,et al.  Magnetic Resonance in Medicine , 1991, The Western journal of medicine.

[103]  D. Tank,et al.  Brain magnetic resonance imaging with contrast dependent on blood oxygenation. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[104]  P. Mansfield,et al.  High‐speed multislice T1 mapping using inversion‐recovery echo‐planar imaging , 1990, Magnetic resonance in medicine.

[105]  J. Mugler,et al.  Three‐dimensional magnetization‐prepared rapid gradient‐echo imaging (3D MP RAGE) , 1990, Magnetic resonance in medicine.

[106]  S. Ogawa,et al.  Oxygenation‐sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields , 1990, Magnetic resonance in medicine.

[107]  R. Ordidge,et al.  Inversion‐recovery echo‐planar imaging (ir‐epi) at 0.5 T , 1990, Magnetic resonance in medicine.

[108]  R J Ordidge,et al.  Measurement of T1 by echo-planar imaging and the construction of computer-generated images. , 1986, Physics in medicine and biology.

[109]  D. Fayuk,et al.  The Journal of Physiology , 1978, Medical History.

[110]  J. Griffiths,et al.  RF Coils for MRI , 2012 .

[111]  B. Fischl,et al.  Identifying common-source driven correlations in resting-state fMRI via laminar-specific analysis in the human visual cortex , 2009 .

[112]  C. Economo,et al.  Atlas of Cytoarchitectonics of the Adult Human Cerebral Cortex , 2008 .

[113]  P. Jezzard,et al.  Sources of distortion in functional MRI data , 1999, Human brain mapping.

[114]  K. Brodmann Vergleichende Lokalisationslehre der Großhirnrinde : in ihren Prinzipien dargestellt auf Grund des Zellenbaues , 1985 .