Electrochemical deposition of germanium sulfide from room-temperature ionic liquids and subsequent Ag doping in an aqueous solution.

A facile room-temperature electrochemical deposition process for germanium sulfide (GeS(x)) has been developed with the use of an ionic liquid as an electrolyte. The electrodeposition mechanism follows the induced codeposition of Ge and S precursors in ionic liquids generating GeS(x) films. The electrodeposited GeS(x) films were characterized by scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS) and Raman and X-ray photoelectron spectroscopy (XPS). An aqueous-based Ag doping method was used to dope electrochemically grown GeS(x) films with controlled doping compared to the conventional process, which can be used in next-generation solid-state memory devices.

[1]  Maria Mitkova,et al.  Memory Devices Based on Mass Transport in Solid Electrolytes , 2010 .

[2]  Jihong Yu,et al.  Preparation of Inorganic Materials Using Ionic Liquids , 2010, Advanced materials.

[3]  F. Endres Electrodeposition of Nanosized Germanium from GeBr4 and GeCl4 in an Ionic Liquid , 2002 .

[4]  Maria Mitkova,et al.  Evolution of chemical structure during silver photodiffusion into chalcogenide glass thin films , 2009 .

[5]  M. Kozicki,et al.  Ag-photodoping in Ge-chalcogenide amorphous thin films—Reaction products and their characterization , 2007 .

[6]  Yi Ma,et al.  Demonstration of Conductive Bridging Random Access Memory (CBRAM) in logic CMOS process , 2011 .

[7]  S. Kshirsagar,et al.  Raman scattering and short range order in amorphous germanium , 1985 .

[8]  M. Kozicki,et al.  Electrochemical metallization memories—fundamentals, applications, prospects , 2011, Nanotechnology.

[9]  D. Hewak,et al.  Deposition and characterization of germanium sulphide glass planar waveguides. , 2004, Optics express.

[10]  T. Fukano,et al.  GeS2/metal thin film bilayered structures as write-once-type optical recording materials , 2006 .

[11]  F. Endres,et al.  Semiconductor nanostructures via electrodeposition from ionic liquids , 2010 .

[12]  Dimitri D. Vaughn,et al.  Single-crystal colloidal nanosheets of GeS and GeSe. , 2010, Journal of the American Chemical Society.

[13]  T. Wágner,et al.  In-situ measurement of reversible photodarkening in ion-conducting chalcohalide glass. , 2008, Optics express.

[14]  G. Chryssikos,et al.  Structure and Optical Conductivity of Silver Thiogermanate Glasses , 1994 .

[15]  The effects of thermal annealing on the obliquely deposited Ag–Ge–S thin films , 2009 .

[16]  R. Golovchak,et al.  Short-range order evolution in S-rich Ge-S glasses by X-ray photoelectron spectroscopy , 2011 .

[17]  Daniel W. Hewak,et al.  High-purity germanium-sulphide glass for optoelectronic applications synthesised by chemical vapour deposition , 2004 .

[18]  K. Morinaga,et al.  Compositional variation in the structure of Ge-S glasses , 2001 .

[19]  E. Bauer Phänomenologische Theorie der Kristallabscheidung an Oberflächen. I , 1958 .

[20]  Maria Mitkova,et al.  Crystallization effects in annealed thin Ge–Se films photodiffused with Ag , 2006 .

[21]  Yoshio Nishi,et al.  Challenges and opportunities for future non-volatile memory technology , 2011 .

[22]  T. Duc,et al.  ESCA study of molecular GeS3-x Tex As2 glasses , 1974 .

[23]  Hajime Matsumoto,et al.  N-Methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl)imide (PP13–TFSI) – novel electrolyte base for Li battery , 2003 .

[24]  F. Schäffler,et al.  Self‐assembled Si and SiGe nanostructures: New growth concepts and structural analysis , 2006 .

[25]  R. Almeida,et al.  Preparation and Characterization of Germanium Sulfide Based Sol-Gel Planar Waveguides , 2000 .

[26]  Eaglesham,et al.  Dislocation-free Stranski-Krastanow growth of Ge on Si(100). , 1990, Physical review letters.

[27]  D. Georgiev,et al.  Synthesis and characterization of germanium sulfide aerogels , 2006 .

[28]  Maria Mitkova,et al.  Thermal and photodiffusion of Ag in S-rich Ge-S amorphous films , 2004 .