ZX-Calculus: Cyclotomic Supplementarity and Incompleteness for Clifford+T Quantum Mechanics
暂无分享,去创建一个
Simon Perdrix | Quanlong Wang | Emmanuel Jeandel | Renaud Vilmart | S. Perdrix | E. Jeandel | Quanlong Wang | R. Vilmart
[1] Peter Selinger,et al. Quantum circuits of T-depth one , 2012, ArXiv.
[2] Bob Coecke,et al. Interacting quantum observables: categorical algebra and diagrammatics , 2009, ArXiv.
[3] Simon Perdrix,et al. Pivoting makes the ZX-calculus complete for real stabilizers , 2013, QPL.
[4] Simon Perdrix,et al. Y-Calculus: A language for real Matrices derived from the ZX-Calculus , 2017, QPL.
[5] Peter Selinger,et al. Finite Dimensional Hilbert Spaces are Complete for Dagger Compact Closed Categories (Extended Abstract) , 2011, QPL/DCM@ICALP.
[6] Simon Perdrix,et al. A Simplified Stabilizer ZX-calculus , 2016, QPL.
[7] Miriam Backens,et al. The ZX-calculus is complete for the single-qubit Clifford+T group , 2014, QPL.
[8] Simon Perdrix,et al. Environment and Classical Channels in Categorical Quantum Mechanics , 2010, CSL.
[9] Simon Perdrix,et al. Rewriting Measurement-Based Quantum Computations with Generalised Flow , 2010, ICALP.
[10] Miriam Backens,et al. The ZX-calculus is complete for stabilizer quantum mechanics , 2013, 1307.7025.
[11] Miriam Backens,et al. A Complete Graphical Calculus for Spekkens’ Toy Bit Theory , 2014, 1411.1618.
[12] Bill Edwards,et al. Three qubit entanglement within graphical Z/X-calculus , 2011, HPC.
[13] Simon Perdrix,et al. Supplementarity is Necessary for Quantum Diagram Reasoning , 2015, MFCS.
[14] Simon Perdrix,et al. A Complete Axiomatisation of the ZX-Calculus for Clifford+T Quantum Mechanics , 2017, LICS.
[15] Bob Coecke,et al. Axiomatic Description of Mixed States From Selinger's CPM-construction , 2008, QPL.
[16] Miriam Backens,et al. Making the stabilizer ZX-calculus complete for scalars , 2015, 1507.03854.
[17] R. Spekkens. Evidence for the epistemic view of quantum states: A toy theory , 2004, quant-ph/0401052.
[18] Vladimir Zamdzhiev,et al. The ZX calculus is incomplete for quantum mechanics , 2014, QPL.