The rhesus rotavirus VP4 sialic acid binding domain has a galectin fold with a novel carbohydrate binding site

Cell attachment and membrane penetration are functions of the rotavirus outer capsid spike protein, VP4. An activating tryptic cleavage of VP4 produces the N‐terminal fragment, VP8*, which is the viral hemagglutinin and an important target of neutralizing antibodies. We have determined, by X‐ray crystallography, the atomic structure of the VP8* core bound to sialic acid and, by NMR spectroscopy, the structure of the unliganded VP8* core. The domain has the β‐sandwich fold of the galectins, a family of sugar binding proteins. The surface corresponding to the galectin carbohydrate binding site is blocked, and rotavirus VP8* instead binds sialic acid in a shallow groove between its two β‐sheets. There appears to be a small induced fit on binding. The residues that contact sialic acid are conserved in sialic acid‐dependent rotavirus strains. Neutralization escape mutations are widely distributed over the VP8* surface and cluster in four epitopes. From the fit of the VP8* core into the virion spikes, we propose that VP4 arose from the insertion of a host carbohydrate binding domain into a viral membrane interaction protein.

[1]  R. Chanock,et al.  Identification of cross-reactive and serotype 2-specific neutralization epitopes on VP3 of human rotavirus , 1988, Journal of virology.

[2]  S. Kleiboeker Sequence analysis of the fiber genomic region of a porcine adenovirus predicts a novel fiber protein. , 1995, Virus research.

[3]  K. Wüthrich,et al.  Torsion angle dynamics for NMR structure calculation with the new program DYANA. , 1997, Journal of molecular biology.

[4]  H. Greenberg,et al.  Antibodies to the trypsin cleavage peptide VP8 neutralize rotavirus by inhibiting binding of virions to target cells in culture , 1991, Journal of virology.

[5]  R. Shaw,et al.  Passive protection against rotavirus-induced diarrhea by monoclonal antibodies to the heterotypic neutralization domain of VP7 and the VP8 fragment of VP4 , 1989, Journal of clinical microbiology.

[6]  C. Arias,et al.  Mapping the hemagglutination domain of rotaviruses , 1995, Journal of virology.

[7]  S. Crennell,et al.  Crystal structure of the multifunctional paramyxovirus hemagglutinin-neuraminidase , 2001, Nature Structural Biology.

[8]  R. Glass,et al.  Review of G and P typing results from a global collection of rotavirus strains: implications for vaccine development. , 1996, The Journal of infectious diseases.

[9]  S. Barondes,et al.  X-ray Crystal Structure of the Human Galectin-3 Carbohydrate Recognition Domain at 2.1-Å Resolution* , 1998, The Journal of Biological Chemistry.

[10]  L. Babiuk,et al.  Comparison of rotavirus strains by hemagglutination inhibition. , 1978, Canadian journal of microbiology.

[11]  L. Segovia,et al.  Functional and structural analysis of the sialic acid-binding domain of rotaviruses , 1997, Journal of virology.

[12]  R. Yolken,et al.  SA11 rotavirus is specifically inhibited by an acetylated sialic acid. , 1990, The Journal of infectious diseases.

[13]  P. Kraulis A program to produce both detailed and schematic plots of protein structures , 1991 .

[14]  T. Blundell,et al.  Structure of pentameric human serum amyloid P component , 1994, Nature.

[15]  S. Harrison,et al.  Structure of the reovirus outer capsid and dsRNA‐binding protein σ3 at 1.8 Å resolution , 2001, The EMBO journal.

[16]  S. Harrison,et al.  High‐resolution structure of a polyomavirus VP1‐oligosaccharide complex: implications for assembly and receptor binding , 1997, The EMBO journal.

[17]  H. Greenberg,et al.  Identification of mutations in the rotavirus protein VP4 that alter sialic-acid-dependent infection. , 1998, The Journal of general virology.

[18]  M. Mochizuki,et al.  Haemagglutination by rotaviruses in relation to VP4 genotypes. , 1995, Research in virology.

[19]  A. Bax,et al.  Protein backbone angle restraints from searching a database for chemical shift and sequence homology , 1999, Journal of biomolecular NMR.

[20]  L. Babiuk,et al.  A neutralizing monoclonal antibody to bovine rotavirus VP8 neutralizes rotavirus infection without inhibiting virus attachment to MA-104 cells. , 1998, Canadian journal of veterinary research = Revue canadienne de recherche veterinaire.

[21]  S. Barondes,et al.  X-ray crystal structure of the human galectin-3 carbohydrate recognition domain at 2.1-A resolution. , 1998, The Journal of biological chemistry.

[22]  Kartik Chandran,et al.  Structure of the Reovirus Membrane-Penetration Protein, μ1, in a Complex with Its Protector Protein, σ3 , 2002, Cell.

[23]  M. Estes,et al.  Initial Interaction of Rotavirus Strains with N-Acetylneuraminic (Sialic) Acid Residues on the Cell Surface Correlates with VP4 Genotype, Not Species of Origin , 2002, Journal of Virology.

[24]  R. Valentine Virus structure. , 1969, The Scientific basis of medicine annual reviews.

[25]  A. Surolia,et al.  Analyses of carbohydrate recognition by legume lectins: size of the combining site loops and their primary specificity. , 1997, Journal of molecular biology.

[26]  R. Ward,et al.  Neutralization epitopes on rotavirus SA11 4fM outer capsid proteins , 1990, Journal of virology.

[27]  J. Zou,et al.  Improved methods for building protein models in electron density maps and the location of errors in these models. , 1991, Acta crystallographica. Section A, Foundations of crystallography.

[28]  M. Estes,et al.  Localization of rotavirus VP4 neutralization epitopes involved in antibody-induced conformational changes of virus structure , 1994, Journal of virology.

[29]  E. Méndez,et al.  Integrin alpha(v)beta(3) mediates rotavirus cell entry. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[30]  S. Cusack,et al.  Structure of the influenza virus haemagglutinin complexed with its receptor, sialic acid , 1988, Nature.

[31]  K Wüthrich,et al.  The program XEASY for computer-supported NMR spectral analysis of biological macromolecules , 1995, Journal of biomolecular NMR.

[32]  M. Yeager,et al.  Localization of membrane permeabilization and receptor binding sites on the VP4 hemagglutinin of rotavirus: implications for cell entry. , 2001, Journal of molecular biology.

[33]  H. Gelberg,et al.  Structure and Function of a Ganglioside Receptor for Porcine Rotavirus , 1998, Journal of Virology.

[34]  Withdrawal of rotavirus vaccine recommendation. , 1999, MMWR. Morbidity and mortality weekly report.

[35]  W. Chiu,et al.  Localization of VP4 neutralization sites in rotavirus by three-dimensional cryo-electron microscopy , 1990, Nature.

[36]  E. Méndez,et al.  Interactions between the two surface proteins of rotavirus may alter the receptor-binding specificity of the virus , 1996, Journal of virology.

[37]  M. Kiefel,et al.  Synthesis and biological evaluation of N-acetylneuraminic acid-based rotavirus inhibitors. , 1996, Journal of medicinal chemistry.

[38]  R. Glass,et al.  Surveillance of Rotavirus Strains in the United States: Identification of Unusual Strains , 2000, Journal of Clinical Microbiology.

[39]  A. Kapikian,et al.  Rotavirus vaccines. , 1992, Biotechnology.

[40]  K. Sharp,et al.  Protein folding and association: Insights from the interfacial and thermodynamic properties of hydrocarbons , 1991, Proteins.

[41]  A. Gingras,et al.  Structure of translation factor elF4E bound to m7GDP and interaction with 4E-binding protein , 1997, Nature Structural Biology.

[42]  J. Skehel,et al.  X‐ray crystallographic determination of the structure of the influenza C virus haemagglutinin‐esterase‐fusion glycoprotein , 1999, Acta crystallographica. Section D, Biological crystallography.

[43]  Kurt Wüthrich,et al.  Processing of multi-dimensional NMR data with the new software PROSA , 1992 .

[44]  H. Greenberg,et al.  Genetic mapping indicates that VP4 is the rotavirus cell attachment protein in vitro and in vivo , 1996, Journal of virology.

[45]  H. Greenberg,et al.  The VP8 fragment of VP4 is the rhesus rotavirus hemagglutinin. , 1991, Virology.

[46]  Thilo Stehle,et al.  Crystal structure of reovirus attachment protein σ1 reveals evolutionary relationship to adenovirus fiber , 2002, The EMBO journal.

[47]  R. Shaw,et al.  Functional and topographical analyses of epitopes on the hemagglutinin (VP4) of the simian rotavirus SA11 , 1988, Journal of virology.

[48]  H. Greenberg,et al.  Production and characterization of murine IgA monoclonal antibodies to the surface antigens of rhesus rotavirus. , 1996, Virology.

[49]  E. Mackow,et al.  Selective Membrane Permeabilization by the Rotavirus VP5* Protein Is Abrogated by Mutations in an Internal Hydrophobic Domain , 2000, Journal of Virology.

[50]  R. Chanock,et al.  Comparative analysis of the VP3 gene of divergent strains of the rotaviruses simian SA11 and bovine Nebraska calf diarrhea virus , 1988, Journal of virology.

[51]  M. Kiso,et al.  Ganglioside GM(1a) on the cell surface is involved in the infection by human rotavirus KUN and MO strains. , 1999, Journal of biochemistry.

[52]  Geoffrey J. Barton,et al.  Protein sequence alignments: a strategy for the hierarchical analysis of residue conservation , 1993, Comput. Appl. Biosci..

[53]  R J Read,et al.  Crystallography & NMR system: A new software suite for macromolecular structure determination. , 1998, Acta crystallographica. Section D, Biological crystallography.

[54]  E. Grishin,et al.  Three-dimensional structure of ectatomin from Ectatomma tuberculatum ant venom , 1995, Journal of biomolecular NMR.

[55]  Susanne Carlsson,et al.  Introduction to galectins , 1997, Glycoconjugate Journal.

[56]  M. Estes,et al.  Differential Infection of Polarized Epithelial Cell Lines by Sialic Acid-Dependent and Sialic Acid-Independent Rotavirus Strains , 2001, Journal of Virology.

[57]  N. Roche,et al.  Glycosphingolipid Binding Specificities of Rotavirus: Identification of a Sialic Acid-Binding Epitope , 2001, Journal of Virology.

[58]  R. Shaw,et al.  Antigenic mapping of the surface proteins of rhesus rotavirus. , 1986, Virology.

[59]  C. Sander,et al.  Protein structure comparison by alignment of distance matrices. , 1993, Journal of molecular biology.

[60]  M. Billeter,et al.  MOLMOL: a program for display and analysis of macromolecular structures. , 1996, Journal of molecular graphics.

[61]  R. Hughes The galectin family of mammalian carbohydrate-binding molecules. , 1997, Biochemical Society transactions.

[62]  M. Estes,et al.  Trypsin Cleavage Stabilizes the Rotavirus VP4 Spike , 2001, Journal of Virology.

[63]  H. Greenberg,et al.  The rhesus rotavirus gene encoding protein VP3: location of amino acids involved in homologous and heterologous rotavirus neutralization and identification of a putative fusion region. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[64]  N. Kobayashi,et al.  Identification of operationally overlapping and independent cross-reactive neutralization regions on human rotavirus VP4. , 1990, The Journal of general virology.

[65]  J. Thompson,et al.  The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. , 1997, Nucleic acids research.

[66]  Y. Takada,et al.  Integrins α2β1 and α4β1 Can Mediate SA11 Rotavirus Attachment and Entry into Cells , 2000, Journal of Virology.

[67]  S. Harrison,et al.  Purified recombinant rotavirus VP7 forms soluble, calcium-dependent trimers. , 2000, Virology.

[68]  R. Shaw,et al.  VP4 Differentially Regulates TRAF2 Signaling, Disengaging JNK Activation while Directing NF-κB to Effect Rotavirus-specific Cellular Responses* , 2001, The Journal of Biological Chemistry.

[69]  E. Kohli,et al.  Rotavirus Spike Protein VP4 Is Present at the Plasma Membrane and Is Associated with Microtubules in Infected Cells , 2000, Journal of Virology.

[70]  H. Greenberg,et al.  Identification of two independent neutralization domains on the VP4 trypsin cleavage products VP5* and VP8* of human rotavirus ST3. , 1995, Virology.

[71]  M. Yeager,et al.  Three-dimensional structure of rhesus rotavirus by cryoelectron microscopy and image reconstruction , 1990, The Journal of cell biology.

[72]  D. Graham,et al.  Proteolytic enhancement of rotavirus infectivity: molecular mechanisms , 1981, Journal of virology.

[73]  J. Thornton,et al.  AQUA and PROCHECK-NMR: Programs for checking the quality of protein structures solved by NMR , 1996, Journal of biomolecular NMR.

[74]  Collaborative Computational,et al.  The CCP4 suite: programs for protein crystallography. , 1994, Acta crystallographica. Section D, Biological crystallography.

[75]  J. Thornton,et al.  PROCHECK: a program to check the stereochemical quality of protein structures , 1993 .

[76]  S. Harrison,et al.  Proteolysis of Monomeric Recombinant Rotavirus VP4 Yields an Oligomeric VP5* Core , 2001, Journal of Virology.