A least squares based finite volume method for the Cahn-Hilliard and Cahn-Hilliard-reaction equations

A vertex-centred finite volume method (FVM) for the Cahn-Hilliard (CH) and recently proposed Cahn-Hilliard-reaction (CHR) equations is presented. Information at control volume faces is computed using a high-order least-squares approach based on Taylor series approximations. This least-squares problem explicitly includes the variational boundary condition (VBC) that ensures that the discrete equations satisfy all of the boundary conditions. We use this approach to solve the CH and CHR equations in one and two dimensions and show that our scheme satisfies the VBC to at least second order. For the CH equation we show evidence of conservative, gradient stable solutions, however for the CHR equation, strict gradient-stability is more challenging to achieve.

[1]  Guillermo Sapiro,et al.  Fourth order partial differential equations on general geometries , 2006, J. Comput. Phys..

[2]  A. Yamada,et al.  Experimental visualization of lithium diffusion in LixFePO4. , 2008, Nature materials.

[3]  Yan Xu,et al.  Local discontinuous Galerkin methods for the Cahn-Hilliard type equations , 2007, J. Comput. Phys..

[4]  B. Vollmayr-Lee,et al.  Fast and accurate coarsening simulation with an unconditionally stable time step. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[5]  Åke Björck,et al.  Numerical methods for least square problems , 1996 .

[6]  S. Patankar Numerical Heat Transfer and Fluid Flow , 2018, Lecture Notes in Mechanical Engineering.

[7]  Ian Turner,et al.  A second order finite volume technique for simulating transport in anisotropic media , 2003 .

[8]  Mehdi Dehghan,et al.  A numerical method based on the boundary integral equation and dual reciprocity methods for one-dimensional Cahn–Hilliard equation , 2009 .

[9]  Steven Dargaville,et al.  Predicting Active Material Utilization in LiFePO4 Electrodes Using a Multiscale Mathematical Model , 2010 .

[10]  Arturo Pacheco-Vega,et al.  Numerical Simulations of Heat Transfer and Fluid Flow Problems Using an Immersed-Boundary Finite-Volume Method on NonStaggered Grids , 2005 .

[11]  F. Navarrina,et al.  High‐order finite volume schemes on unstructured grids using moving least‐squares reconstruction. Application to shallow water dynamics , 2006 .

[12]  Martin Z Bazant,et al.  Theory of chemical kinetics and charge transfer based on nonequilibrium thermodynamics. , 2012, Accounts of chemical research.

[13]  Venkat Srinivasan,et al.  Discharge Model for the Lithium Iron-Phosphate Electrode , 2004 .

[14]  Damian Burch,et al.  Size-dependent spinodal and miscibility gaps for intercalation in nanoparticles. , 2009, Nano letters.

[15]  I. Turner,et al.  Error Bounds for Least Squares Gradient Estimates , 2010, SIAM J. Sci. Comput..

[16]  Daniel A. Cogswell,et al.  Theory of coherent nucleation in phase-separating nanoparticles. , 2013, Nano letters.

[17]  M. H. Everdell Introduction to Chemical Thermodynamics , 1965 .

[18]  K. S. Nanjundaswamy,et al.  Phospho‐olivines as Positive‐Electrode Materials for Rechargeable Lithium Batteries , 1997 .

[19]  S. M. Choo,et al.  Conservative nonlinear difference scheme for the Cahn-Hilliard equation—II , 1998 .

[20]  Yunxian Liu,et al.  A class of stable spectral methods for the Cahn-Hilliard equation , 2009, J. Comput. Phys..

[21]  Gianluca Iaccarino,et al.  IMMERSED BOUNDARY METHODS , 2005 .

[22]  E. Mello,et al.  Numerical study of the Cahn–Hilliard equation in one, two and three dimensions , 2004, cond-mat/0410772.

[23]  Lloyd N. Trefethen,et al.  Fourth-Order Time-Stepping for Stiff PDEs , 2005, SIAM J. Sci. Comput..

[24]  J. Hoffman Numerical Methods for Engineers and Scientists , 2018 .

[25]  Carol S. Woodward,et al.  Enabling New Flexibility in the SUNDIALS Suite of Nonlinear and Differential/Algebraic Equation Solvers , 2020, ACM Trans. Math. Softw..

[26]  Rajat Mittal,et al.  A sharp interface immersed boundary method for compressible viscous flows , 2007, J. Comput. Phys..

[27]  Takashi Ida,et al.  Isolation of Solid Solution Phases in Size‐Controlled LixFePO4 at Room Temperature , 2009 .

[28]  M ChooS,et al.  Cahn‐Hilliad方程式に関する保存型非線形差分スキーム‐II , 2000 .

[29]  J. Lowengrub,et al.  Conservative multigrid methods for Cahn-Hilliard fluids , 2004 .

[30]  P. Sweby High Resolution Schemes Using Flux Limiters for Hyperbolic Conservation Laws , 1984 .

[31]  D. J. Eyre Unconditionally Gradient Stable Time Marching the Cahn-Hilliard Equation , 1998 .

[32]  Charles Delacourt,et al.  Study of the LiFePO4/FePO4 Two-Phase System by High-Resolution Electron Energy Loss Spectroscopy , 2006 .

[33]  J. Crank Free and moving boundary problems , 1984 .

[34]  Yinnian He,et al.  On large time-stepping methods for the Cahn--Hilliard equation , 2007 .

[35]  Damian Burch,et al.  Intercalation dynamics in lithium-ion batteries , 2009 .

[36]  James M. Hyman,et al.  High order finite volume approximations of differential operators on nonuniform grids , 1992 .

[37]  Timothy A. Davis,et al.  Algorithm 915, SuiteSparseQR: Multifrontal multithreaded rank-revealing sparse QR factorization , 2011, TOMS.

[38]  Jaime Peraire,et al.  A time-adaptive finite volume method for the Cahn-Hilliard and Kuramoto-Sivashinsky equations , 2008, J. Comput. Phys..

[39]  Martin Z. Bazant,et al.  Intercalation dynamics in rechargeable battery materials : General theory and phase-transformation waves in LiFePO4 , 2008 .

[40]  Ming Wang,et al.  A nonconforming finite element method for the Cahn-Hilliard equation , 2010, J. Comput. Phys..

[41]  E. Bertolazzi,et al.  A unified treatment of boundary conditions in least-square based finite-volume methods , 2005 .

[42]  Carl D. Meyer,et al.  Matrix Analysis and Applied Linear Algebra , 2000 .

[43]  Ian Turner,et al.  On derivative estimation and the solution of least squares problems , 2008 .

[44]  Robert Nürnberg,et al.  Adaptive finite element methods for Cahn-Hilliard equations , 2008 .

[45]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .

[46]  Gene H. Golub,et al.  Matrix computations , 1983 .