Comparative 1D Blue-Native electrophoresis analysis of Plasmodium falciparum and human proteins associated with cytoadherence

[1]  C. Lim,et al.  Expression dynamics and physiologically relevant functional study of STEVOR in asexual stages of Plasmodium falciparum infection , 2017, Cellular microbiology.

[2]  L. Cui,et al.  Sex-Specific Biology of the Human Malaria Parasite Revealed from the Proteomes of Mature Male and Female Gametocytes * , 2017, Molecular & Cellular Proteomics.

[3]  W. Schulz-Schaeffer,et al.  Cellular prion protein mediates early apoptotic proteome alternation and phospho-modification in human neuroblastoma cells , 2017, Cell Death & Disease.

[4]  Joshua E. Elias,et al.  The Prenylated Proteome of Plasmodium falciparum Reveals Pathogen-specific Prenylation Activity and Drug Mechanism-of-action* , 2016, Molecular & Cellular Proteomics.

[5]  T. Walther,et al.  Angiotensin receptors and β-catenin regulate brain endothelial integrity in malaria. , 2016, The Journal of clinical investigation.

[6]  A. Craig,et al.  Tumor necrosis factor reduces Plasmodium falciparum growth and activates calcium signaling in human malaria parasites , 2016, Biochimica et biophysica acta.

[7]  I. Vakonakis,et al.  Plasmodium falciparum Plasmodium helical interspersed subtelomeric proteins contribute to cytoadherence and anchor P. falciparum erythrocyte membrane protein 1 to the host cell cytoskeleton , 2016, Cellular microbiology.

[8]  A. Craig,et al.  An external sensing system in Plasmodium falciparum-infected erythrocytes , 2016, Malaria Journal.

[9]  G. von Heijne,et al.  RIFINs are adhesins implicated in severe Plasmodium falciparum malaria , 2015, Nature Medicine.

[10]  Ashutosh Kumar,et al.  Dynamic association of PfEMP1 and KAHRP in knobs mediates cytoadherence during Plasmodium invasion , 2015, Scientific Reports.

[11]  Kan Yang,et al.  miR-133a mediates the hypoxia-induced apoptosis by inhibiting TAGLN2 expression in cardiac myocytes , 2015, Molecular and Cellular Biochemistry.

[12]  M. Erat,et al.  A Plasmodium falciparum PHIST protein binds the virulence factor PfEMP1 and comigrates to knobs on the host cell surface , 2014, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[13]  A. Craig,et al.  Pathogenesis of cerebral malaria—inflammation and cytoadherence , 2014, Front. Cell. Infect. Microbiol..

[14]  A. Moss The angiopoietin:Tie 2 interaction: a potential target for future therapies in human vascular disease. , 2013, Cytokine & growth factor reviews.

[15]  A. Rebollo,et al.  Metabolic Acidosis Induced by Plasmodium Falciparum Intraerythrocytic Stages Alters Blood—Brain Barrier Integrity , 2011, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[16]  H. Saito,et al.  The effects of aging on pulmonary oxidative damage, protein nitration, and extracellular superoxide dismutase down-regulation during systemic inflammation. , 2011, Free radical biology & medicine.

[17]  R. Ménard,et al.  Signalling in malaria parasites. The MALSIG consortium. , 2009, Parasite.

[18]  C. Rogier,et al.  Apoptosis: a potential triggering mechanism of neurological manifestation in Plasmodium falciparum malaria , 2007, Parasite immunology.

[19]  P. Kubes,et al.  Differential Roles of CD36, ICAM‐1, and P‐selectin in Plasmodium falciparum Cytoadherence In Vivo , 2007, Microcirculation.

[20]  A. Craig,et al.  Plasmodium falciparum intercellular adhesion molecule-1-based cytoadherence-related signaling in human endothelial cells. , 2007, The Journal of infectious diseases.

[21]  Masahide Takahashi,et al.  Girdin, a Novel Actin‐Binding Protein, and Its Family of Proteins Possess Versatile Functions in the Akt and Wnt Signaling Pathways , 2006, Annals of the New York Academy of Sciences.

[22]  A. Craig,et al.  Comparative proteomic analysis of metabolically labelled proteins from Plasmodium falciparum isolates with different adhesion properties , 2006, Malaria Journal.

[23]  H. Lehr,et al.  Plasmodium falciparum Malaria: Reduction of Endothelial Cell Apoptosis In Vitro , 2005, Infection and Immunity.

[24]  Wenjiang J. Fu,et al.  Erratum: Differentiating the pathologies of cerebral malaria by post-mortem parasite counts (Nature Medicine (2004) 10 (143-145)) , 2004 .

[25]  Wenjiang J. Fu,et al.  Differentiating the pathologies of cerebral malaria by postmortem parasite counts , 2004, Nature Medicine.

[26]  R. Poulsom,et al.  EndoPDI, a Novel Protein-disulfide Isomerase-like Protein That Is Preferentially Expressed in Endothelial Cells Acts as a Stress Survival Factor* , 2003, Journal of Biological Chemistry.

[27]  J. Rostas,et al.  The role of serine/threonine protein phosphatases in exocytosis. , 2003, The Biochemical journal.

[28]  A. Craig,et al.  ICAM-1 can play a major role in mediating P. falciparum adhesion to endothelium under flow. , 2003, Molecular and biochemical parasitology.

[29]  D. Mazier,et al.  Plasmodium falciparum--infected erythrocyte adhesion induces caspase activation and apoptosis in human endothelial cells. , 2003, The Journal of infectious diseases.

[30]  M. Mann,et al.  Stop and go extraction tips for matrix-assisted laser desorption/ionization, nanoelectrospray, and LC/MS sample pretreatment in proteomics. , 2003, Analytical chemistry.

[31]  P. Adamson,et al.  Ezrin and moesin co-localise with ICAM-1 in brain endothelial cells but are not directly associated. , 2002, Brain research. Molecular brain research.

[32]  J. Yates,et al.  Large-scale analysis of the yeast proteome by multidimensional protein identification technology , 2001, Nature Biotechnology.

[33]  R. Nagel,et al.  Plasmodium falciparum: enhanced gametocyte formation in vitro in reticulocyte-rich blood. , 1999, Experimental parasitology.

[34]  J. Loscalzo,et al.  Endothelial cells in physiology and in the pathophysiology of vascular disorders. , 1998, Blood.

[35]  C. Newbold,et al.  Intercellular adhesion molecule-1 and CD36 synergize to mediate adherence of Plasmodium falciparum-infected erythrocytes to cultured human microvascular endothelial cells. , 1997, The Journal of clinical investigation.

[36]  D. Staunton,et al.  Association of intercellular adhesion molecule-1 (ICAM-1) with actin- containing cytoskeleton and alpha-actinin , 1992, The Journal of cell biology.

[37]  Kevin Marsh,et al.  Rapid switching to multiple antigenic and adhesive phenotypes in malaria , 1992, Nature.

[38]  H. Schägger,et al.  Blue native electrophoresis for isolation of membrane protein complexes in enzymatically active form. , 1991, Analytical biochemistry.

[39]  H. Webster,et al.  Molecular basis of sequestration in severe and uncomplicated Plasmodium falciparum malaria: differential adhesion of infected erythrocytes to CD36 and ICAM-1. , 1991, The Journal of infectious diseases.

[40]  N. White,et al.  Human cerebral malaria. A quantitative ultrastructural analysis of parasitized erythrocyte sequestration. , 1985, The American journal of pathology.

[41]  D. Bj,et al.  Tropical malaria contracted the natural way in the Netherlands , 1979 .

[42]  U. K. Laemmli,et al.  Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4 , 1970, Nature.

[43]  L. Ranford-Cartwright,et al.  SIGNALLING IN MALARIA PARASITES , 2017 .

[44]  R. Coppel,et al.  Mapping the domains of the cytoadherence ligand Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) that bind to the knob-associated histidine-rich protein (KAHRP). , 2002, Molecular and biochemical parasitology.

[45]  B. Delemarre,et al.  [Tropical malaria contracted the natural way in the Netherlands]. , 1979, Nederlands tijdschrift voor geneeskunde.