Quantum neural networks to simulate many-body quantum systems

We conduct experimental simulations of many body quantum systems using a \emph{hybrid} classical-quantum algorithm. In our setup, the wave function of the transverse field quantum Ising model is represented by a restricted Boltzmann machine. This neural network is then trained using variational Monte Carlo assisted by a D-Wave quantum sampler to find the ground state energy. Our results clearly demonstrate that already the first generation of quantum computers can be harnessed to tackle non-trivial problems concerning physics of many body quantum systems.

[1]  Jacob biamonte,et al.  Quantum machine learning , 2016, Nature.

[2]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[3]  R. Needs,et al.  Quantum Monte Carlo simulations of solids , 2001 .

[4]  S. C. Pieper,et al.  Quantum Monte Carlo methods for nuclear physics , 2014, 1412.3081.

[5]  T. Gasenzer,et al.  Quenches near Ising quantum criticality as a challenge for artificial neural networks , 2018, Physical Review B.

[6]  M. Benedetti,et al.  Estimation of effective temperatures in quantum annealers for sampling applications: A case study with possible applications in deep learning , 2015, 1510.07611.

[7]  Sebastian Deffner,et al.  Quantum fluctuation theorem to benchmark quantum annealers , 2018, 1801.06925.

[8]  Andrew J. Ochoa,et al.  Uncertain fate of fair sampling in quantum annealing , 2018, Physical Review A.

[9]  E. Solano,et al.  Digital quantum simulation of many-body non-Markovian dynamics , 2016, 1604.00203.

[10]  Bartlomiej Gardas,et al.  Counting defects in quantum computers with Graphics Processing Units , 2018, J. Comput. Phys..

[11]  M. W. Johnson,et al.  Phase transitions in a programmable quantum spin glass simulator , 2018, Science.

[12]  Wojciech H. Zurek,et al.  Defects in Quantum Computers , 2017, Scientific Reports.

[13]  R. Sarpong,et al.  Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.

[14]  P. Zoller,et al.  Dynamics of a quantum phase transition. , 2005, Physical review letters.

[15]  M. Sipser,et al.  Quantum Computation by Adiabatic Evolution , 2000, quant-ph/0001106.

[16]  Roger Melko,et al.  Quantum Boltzmann Machine , 2016, 1601.02036.

[17]  Daniel Jaschke,et al.  Open source Matrix Product States: Opening ways to simulate entangled many-body quantum systems in one dimension , 2017, Comput. Phys. Commun..

[18]  Meng Cheng,et al.  Universal Quantum Computation with Gapped Boundaries. , 2017, Physical review letters.

[19]  Mark W. Johnson,et al.  Observation of topological phenomena in a programmable lattice of 1,800 qubits , 2018, Nature.

[20]  Y. Couder,et al.  Wave-Based Turing Machine: Time Reversal and Information Erasing. , 2016, Physical review letters.

[21]  Florent Krzakala,et al.  A Deterministic and Generalized Framework for Unsupervised Learning with Restricted Boltzmann Machines , 2017, Physical Review X.

[22]  Lu-Ming Duan,et al.  Efficient representation of quantum many-body states with deep neural networks , 2017, Nature Communications.

[23]  Rupak Biswas,et al.  Quantum-Assisted Learning of Hardware-Embedded Probabilistic Graphical Models , 2016, 1609.02542.

[24]  D. Deng,et al.  Quantum Entanglement in Neural Network States , 2017, 1701.04844.

[25]  S. Sorella GREEN FUNCTION MONTE CARLO WITH STOCHASTIC RECONFIGURATION , 1998, cond-mat/9803107.

[26]  Seth Lloyd,et al.  Adiabatic Quantum Computation Is Equivalent to Standard Quantum Computation , 2008, SIAM Rev..

[27]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[28]  J. Gambetta,et al.  Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets , 2017, Nature.

[29]  J. Chen,et al.  Equivalence of restricted Boltzmann machines and tensor network states , 2017, 1701.04831.

[30]  A. Chenu,et al.  Quantum Simulation of Generic Many-Body Open System Dynamics Using Classical Noise. , 2016, Physical review letters.

[31]  Maria Schuld,et al.  The quest for a Quantum Neural Network , 2014, Quantum Information Processing.

[32]  B. Terhal Quantum supremacy, here we come , 2018 .

[33]  E. Lieb,et al.  Two Soluble Models of an Antiferromagnetic Chain , 1961 .

[34]  Quantum supremacy? , 2019, New Scientist.

[35]  Matthias Troyer,et al.  Neural-network quantum state tomography , 2018 .

[36]  Daniel A. Lidar,et al.  Error-corrected quantum annealing with hundreds of qubits , 2013, Nature Communications.

[37]  Daniel A. Lidar,et al.  Reexamining classical and quantum models for the D-Wave One processor , 2014, 1409.3827.

[38]  Jacek Dziarmaga,et al.  Dynamics of a quantum phase transition: exact solution of the quantum Ising model. , 2005, Physical review letters.

[39]  J. Cirac,et al.  Neural-Network Quantum States, String-Bond States, and Chiral Topological States , 2017, 1710.04045.

[40]  M. W. Johnson,et al.  Entanglement in a Quantum Annealing Processor , 2014, 1401.3500.

[41]  Matthias Troyer,et al.  Solving the quantum many-body problem with artificial neural networks , 2016, Science.

[42]  Isaac L. Chuang,et al.  Quantum Computation and Quantum Information: Frontmatter , 2010 .

[43]  M. Amin Searching for quantum speedup in quasistatic quantum annealers , 2015, 1503.04216.

[44]  Seth Lloyd,et al.  Adiabatic Quantum Computation is Equivalent to Standard Quantum Computation , 2007, SIAM J. Comput..

[45]  V. Chernyak,et al.  Quantum Annealing and Thermalization: Insights from Integrability. , 2018, Physical review letters.

[46]  G. Vidal Efficient classical simulation of slightly entangled quantum computations. , 2003, Physical review letters.

[47]  Matthias Troyer,et al.  Computational complexity and fundamental limitations to fermionic quantum Monte Carlo simulations , 2004, Physical review letters.

[48]  Seth Lloyd,et al.  Adiabatic quantum computation is equivalent to standard quantum computation , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.

[49]  Jack Raymond,et al.  Global Warming: Temperature Estimation in Annealers , 2016, Front. ICT.

[50]  Steven H. Adachi,et al.  Application of Quantum Annealing to Training of Deep Neural Networks , 2015, ArXiv.

[51]  Matthias Troyer,et al.  Neural-network Quantum States , 2018 .

[52]  U. Vazirani,et al.  How "Quantum" is the D-Wave Machine? , 2014, 1401.7087.

[53]  J. Plotkin,et al.  Phenotypic plasticity promotes recombination and gene clustering in periodic environments , 2016, Nature Communications.

[54]  H. Nishimori,et al.  Quantum annealing in the transverse Ising model , 1998, cond-mat/9804280.

[55]  U. Schollwoeck The density-matrix renormalization group , 2004, cond-mat/0409292.

[56]  Ryan Babbush,et al.  What is the Computational Value of Finite Range Tunneling , 2015, 1512.02206.

[57]  Ben Calderhead,et al.  A general construction for parallelizing Metropolis−Hastings algorithms , 2014, Proceedings of the National Academy of Sciences.

[58]  Peter Wittek,et al.  Inductive Supervised Quantum Learning. , 2017, Physical review letters.

[59]  Christian F. A. Negre,et al.  Graph Partitioning using Quantum Annealing on the D-Wave System , 2017, ArXiv.