Selection of Seeds for Resting-State fMRI-Based Prediction of Individual Brain Maturity
暂无分享,去创建一个
Marcus Heldmann | Thomas F. Münte | Amir Madany Mamlouk | Norman Scheel | Andrea Essenwanger | Ulrike M. Krämer | T. Münte | U. Krämer | M. Heldmann | A. M. Mamlouk | Norman Scheel | Andrea Essenwanger
[1] A. Dale,et al. Age-related alterations in white matter microstructure measured by diffusion tensor imaging , 2005, Neurobiology of Aging.
[2] Margaret D. King,et al. The NKI-Rockland Sample: A Model for Accelerating the Pace of Discovery Science in Psychiatry , 2012, Front. Neurosci..
[3] Abraham Z. Snyder,et al. Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion , 2012, NeuroImage.
[4] N. Tzourio-Mazoyer,et al. Automated Anatomical Labeling of Activations in SPM Using a Macroscopic Anatomical Parcellation of the MNI MRI Single-Subject Brain , 2002, NeuroImage.
[5] Jonathan D. Power,et al. Prediction of Individual Brain Maturity Using fMRI , 2010, Science.
[6] Catie Chang,et al. Time–frequency dynamics of resting-state brain connectivity measured with fMRI , 2010, NeuroImage.
[7] Yufeng Zang,et al. DPARSF: A MATLAB Toolbox for “Pipeline” Data Analysis of Resting-State fMRI , 2010 .
[8] M. Greicius,et al. Decoding subject-driven cognitive states with whole-brain connectivity patterns. , 2012, Cerebral cortex.
[9] J. Callicott,et al. Neurophysiological correlates of age-related changes in human motor function , 2002, Neurology.