GLOBAL THREE-DIMENSIONAL POTENTIAL ENERGY SURFACES OF H2S FROM THE AB INITIO EFFECTIVE VALENCE SHELL HAMILTONIAN METHOD

The correlated, size extensive ab initio effective valence shell Hamiltonian (HV) method is used to compute three‐dimensional potential energy surfaces for the ground and several excited electronic states of the H2S molecule. A single calculation of the HV simultaneously generates all states of interest as well as ionization potentials. Particular emphasis is placed on the two lowest 1 1A″ excited surfaces (one valencelike and the other Rydberg‐type) that are involved in recent experiments probing nonadiabatic photodissociation processes. Supplementary effective operator calculations generate three‐dimensional surfaces of dipole moments and transition dipole matrix elements, but emphasis is placed on the transition dipoles relevant to the dissociation process. Comparisons to both experiment and previous calculations for this system support the ability of multireference perturbation methods to describe global potential energy surfaces for open shell systems. We discuss the implication of our calculations f...

[1]  J. L. Dunham The Energy Levels of a Rotating Vibrator , 1932 .

[2]  W. Price,et al.  The far ultra-violet absorption spectra of the hydrides and deuterides of sulphur, selenium and tellurium and of the methyl derivatives of hydrogen sulphide , 1950, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[3]  A. L. McClellan,et al.  Tables of experimental dipole moments , 1963 .

[4]  W. Simpson,et al.  Vacuum‐Ultraviolet Studies of Sulfides. I. Spectral Correlations and Assignment of the NV Transitions , 1965 .

[5]  D. G. Carroll,et al.  Semiempirical Molecular Orbital Calculations. I. The Electronic Structure of H2O and H2S , 1966 .

[6]  B. Brandow Linked-Cluster Expansions for the Nuclear Many-Body Problem , 1967 .

[7]  I. H. Hillier,et al.  Ab initio calculations of the ground and excited states of H2S , 1970 .

[8]  Robert J. Buenker,et al.  Ab initio configuration interaction calculations for the electronic spectrum of hydrogen sulfide , 1976 .

[9]  K. Siegbahn,et al.  Vibrational and Vibronic Structure in the Valence Electron Spectrum of H2S , 1976 .

[10]  M. Guest,et al.  Ab initio study of the ground and excited states of hydrogen sulphide using SCF and CI calculations , 1976 .

[11]  G. Herzberg,et al.  Constants of diatomic molecules , 1979 .

[12]  A. D. McLean,et al.  Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z=11–18 , 1980 .

[13]  K. Freed,et al.  Abinitio effective valence shell Hamiltonian for the neutral and ionic valence states of N, O, F, Si, P, and S , 1980 .

[14]  Hans-Joachim Werner,et al.  A quadratically convergent MCSCF method for the simultaneous optimization of several states , 1981 .

[15]  K. Freed,et al.  Convergence studies of the effective valence shell Hamiltonian for correlation energies of the fluorine atom and its ions using third order quasidegenerate many‐body perturbation theory , 1981 .

[16]  K. Freed,et al.  Analysis of abinitio effective valence shell Hamiltonian calculations using third order quasidegenerate many‐body perturbation theory , 1981 .

[17]  K. Kulander The photodissociation of H2S: A study of indirect photodissociation , 1984 .

[18]  A. Rauk,et al.  The ground and excited states of hydrogen sulfide, methanethiol, and hydrogen selenide , 1984 .

[19]  P. W. Langhoff,et al.  Theoretical studies of photoexcitation and ionization in hydrogen sulfide , 1987 .

[20]  T. Carrington,et al.  Fermi resonances and local modes in water, hydrogen sulfide, and hydrogen selenide , 1988 .

[21]  B. Weiner,et al.  Ultraviolet photodissociation dynamics of H2S and D2S , 1989 .

[22]  K. Hirao,et al.  Computational studies of satellite peaks of the inner-valence ionization of C2H4, C2H2 and H2S using the SAC CI method , 1989 .

[23]  K. Freed,et al.  Comparison of complete model space quasidegenerate many-body perturbation theory for LiH with multireference coupled cluster method , 1989 .

[24]  M. Person,et al.  Molecular dissociation dynamics of H2S at 193.3 nm studied via emission spectroscopy , 1989 .

[25]  Karl F. Freed,et al.  Tests and Applications of Complete Model Space Quasidegenerate Many-Body Perturbation Theory for Molecules , 1989 .

[26]  R. Sension,et al.  Resonance Raman study of the first absorption band of H2S , 1990 .

[27]  R. Dixon,et al.  Photodissociation dynamics and emission spectroscopy of H2S in its first absorption band: A time dependent quantum mechanical study , 1990 .

[28]  M. Ashfold,et al.  Photodissociation dynamics of H2S(D2S) following excitation within its first absorption continuum , 1990 .

[29]  R. Schinke,et al.  Nonadiabatic effects in the photodissociation of H2S , 1990 .

[30]  R. Schinke,et al.  Ab initio calculation of the two lowest excited states of H2S relevant for the photodissociation in the first continuum , 1991 .

[31]  K. Freed,et al.  Effective valence shell Hamiltonian and potential curves of the oxygen molecule from quasidegenerate many‐body perturbation theory , 1991 .

[32]  K. Freed,et al.  The ab initio effective dipole operator of CH: Comparisons with semiempirical methods , 1992 .

[33]  G. Herzberg,et al.  Molecular Spectra and Molecular Structure , 1992 .

[34]  Robert A. Harris,et al.  Polarization effects in resonance Raman scattering from coupled optically bright states , 1992 .

[35]  P. Andresen,et al.  Photodissociation of water in the first absorption band: A prototype for dissociation on a repulsive potential energy surface , 1992 .

[36]  K. Freed,et al.  Ab initio study of the trans‐butadiene π‐valence states using the effective valence shell Hamiltonian method , 1992 .

[37]  R. Schinke,et al.  Nonadiabatic effects in the photodissociation of H2S in the first absorption band: An ab initio study , 1993 .

[38]  Jean-Paul Malrieu,et al.  Size-consistent self-consistent truncated or selected configuration interaction , 1993 .

[39]  V. Vaida,et al.  Direct absorption spectroscopy of the first excited electronic band of jet-cooled H2S , 1993 .

[40]  R. Schinke,et al.  Emission spectroscopy of dissociating H2S: Influence of nonadiabatic coupling , 1994 .

[41]  J. Hessler,et al.  Probing dynamics in the Franck-Condon and exit channel regions of dissociating H2S: Emission spectra upon tunable excitation from 199-203 nm , 1994 .

[42]  J. Light,et al.  An adiabatic model for the photodissociation of CH3SH in the first ultraviolet absorption band , 1995 .

[43]  Rajat K. Chaudhuri,et al.  Applications of multireference perturbation theory to potential energy surfaces by optimal partitioning of H: Intruder states avoidance and convergence enhancement , 1995 .

[44]  K. Freed,et al.  Application of complete space multireference many‐body perturbation theory to N2: Dependence on reference space and H0 , 1995 .

[45]  Chaudhuri,et al.  Convergence behavior of multireference perturbation theory: Forced degeneracy and optimization partitioning applied to the beryllium atom. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[46]  M. Hoffmann Canonical Van Vleck Quasidegenerate Perturbation Theory with Trigonometric Variables , 1996 .