Optically Transparent Antennas and Filters: A Smart City Concept to Alleviate Infrastructure and Network Capacity Challenges

This article discusses challenges in designing optically transparent antennas and filters for smart city applications. The smart city concept seeks to alleviate urban challenges that include infrastructure and network capacity. The proposed frequencies for the next generation of wireless networks (5G) would result in shorter broadcast distances and network dead zones. Additional access points and signal repeaters embedded into the existing infrastructure, by inserting transparent antennas into windows via either meshed conductors or transparent conductive oxides (TCOs), would help to mitigate these issues. Glass-embedded frequency-selective surfaces (FSSs) can be used anywhere that requires microwave filtering and optical transparency. The cyberphysical system security in this forthcoming network also poses challenges to entities that require strict network security. This article focuses mainly on TCOs, particularly doped zinc oxide (ZnO), as promising material for transparent antennas and filters. To demonstrate the potential of ZnOs as highly transparent conductive materials for antenna and filter applications, we designed, fabricated, and tested a gallium-doped ZnO- (GZO) based optically transparent 2.4-GHz Wi-Fi antenna and two FSSs (bandpass and bandstop filters) operating in the 23-29-GHz frequency range. These results confirm the potential for ZnO-based TCOs as suitable alternatives to indium tin oxide (ITO) for microwave applications.

[1]  Q. H. Dao,et al.  Optically transparent and circularly polarized patch antenna for K-band applications , 2016, 2016 German Microwave Conference (GeMiC).

[2]  R. Baktur,et al.  Bandwidth Enhancement of Meshed Patch Antennas Through Proximity Coupling , 2017, IEEE Antennas and Wireless Propagation Letters.

[3]  W. Crossland,et al.  Optically transparent antenna for Ultra Wide-Band applications , 2009, 2009 3rd European Conference on Antennas and Propagation.

[4]  Q. H. Dao,et al.  Design and investigation of meshed patch antennas for applications at 24 GHz , 2015, 2015 European Radar Conference (EuRAD).

[5]  M. Ons,et al.  Transparent Patch Antenna on a-Si Thin Film Glass Solar Module , 2017 .

[6]  O. Yurduseven,et al.  A transparent solar patch antenna for 2.4/2.5 GHz WLAN-WiMAX applications , 2012, 2012 2nd International Symposium On Environment Friendly Energies And Applications.

[7]  R. Gordon Criteria for Choosing Transparent Conductors , 2000 .

[8]  Steven Gregory O'keefe,et al.  Optically transparent frequency selective surfaces on flexible thin plastic substrates , 2015 .

[9]  Koichi Ito,et al.  Antennas Made of Transparent Conductive Films , 2008 .

[10]  Kapil R. Dandekar,et al.  Optically transparent conductive polymer RFID meandering dipole antenna , 2009, 2009 IEEE International Conference on RFID.

[11]  Wayne Cranton,et al.  Optically transparent frequency selective window for microwave applications , 2001 .

[12]  Jiubin Tan,et al.  Optical-transparent Wi-Fi bandpass mesh-coated frequency selective surface , 2014 .

[13]  Ning Guan,et al.  Radiation efficiency of monopole antenna made of a transparent conductive Film , 2007, 2007 IEEE Antennas and Propagation Society International Symposium.

[14]  Reyhan Baktur,et al.  A comparative study on two types of transparent patch antennas , 2011, 2011 XXXth URSI General Assembly and Scientific Symposium.

[15]  Akio Suzuki,et al.  Low resistivity transparent conducting Al-doped ZnO films prepared by pulsed laser deposition , 2003 .

[16]  Youngsung Kim,et al.  Transparent Microstrip Patch Antennas With Multilayer and Metal-Mesh Films , 2017, IEEE Antennas and Wireless Propagation Letters.

[17]  Wayne Cranton,et al.  Optically transparent microstrip antennas , 2000 .

[18]  A Porch,et al.  Basic materials physics of transparent conducting oxides. , 2004, Dalton transactions.

[19]  Tursunjan Yasin,et al.  Transparent Antennas for Solar Cell Integration , 2013 .

[20]  Young-Joon Kim,et al.  Eyeglasses-powered, contact lens-like platform with high power transfer efficiency , 2015, Biomedical microdevices.

[21]  Junsheng Yu,et al.  Design of novel optically transparent antenna for RFID applications , 2014, 2014 Asia-Pacific Microwave Conference.

[22]  Charles Baukal,et al.  Everything you need to know about nox , 2005 .

[23]  V. Ramesh,et al.  Emerging research in wireless and MEMS for medical applications , 2017 .

[24]  R Nilavalan,et al.  A Novel Technique and Soldering Method to Improve Performance of Transparent Polymer Antennas , 2010, IEEE Antennas and Wireless Propagation Letters.

[25]  F. Colombel,et al.  Optically transparent monopole antenna with high radiation efficiency manufactured with silver grid layer (AgGL) , 2009 .

[26]  Jesús A Arellano Inkjet-printed highly transparent solar cell antennas , 2011 .

[27]  Richard J. Langley,et al.  Meshed patch antenna integrated into car windscreen , 2000 .

[28]  Yaodong Liu,et al.  Optical and electrical properties of aluminum-doped ZnO thin films grown by pulsed laser deposition , 2007 .

[29]  Selangor Darul Ehsan Compact Size of CPW Dual-Band Meander-Line Transparent Antenna for WLAN Applications , 2014 .

[30]  A. Skumanich,et al.  Indium shortage implications for the PV and LCD market: Technology and market considerations for maintaining growth , 2009, 2009 34th IEEE Photovoltaic Specialists Conference (PVSC).

[31]  Junsheng Yu,et al.  Novel optically transparent antenna for RFID smart fitting room application , 2015, 2015 Asia-Pacific Microwave Conference (APMC).

[32]  Brian Otis,et al.  A wireless intraocular pressure monitoring device with a solder-filled microchannel antenna , 2014 .

[33]  Chang Won Jung,et al.  Transparent Patch Antenna Using Metal Mesh , 2018, IEEE Transactions on Antennas and Propagation.

[34]  Nicholas J. Kirsch,et al.  5.5 GHz optically transparent mesh wire microstrip patch antenna , 2015 .

[35]  Hyok J. Song,et al.  A Method for Improving the Efficiency of Transparent Film Antennas , 2008, IEEE Antennas and Wireless Propagation Letters.

[36]  Kamal Sarabandi,et al.  Vehicular Optically Transparent UHF Antenna for Terrestrial Communication , 2017, IEEE Transactions on Antennas and Propagation.

[37]  Cynthia Furse,et al.  Challenges with optically transparent patch antennas for small satellites , 2010, 2010 IEEE Antennas and Propagation Society International Symposium.

[38]  M. Drissi,et al.  Microwave planar antenna with RF‐sputtered indium tin oxide films , 2000 .

[39]  Hadis Morkoç,et al.  An alternative material for transparent antennas for commercial and medical applications , 2017 .

[40]  C. Luo,et al.  The Transparent Monopole Antenna for WCDMA and WLAN , 2006, 2006 IEEE Annual Wireless and Microwave Technology Conference.

[41]  N. Guan,et al.  A see-through wire-grid film antenna for WLAN applications , 2012, 2012 IEEE Asia-Pacific Conference on Antennas and Propagation.

[42]  John L. Volakis,et al.  Indium Tin Oxide Film Characterization at 0.1–20 GHz Using Coaxial Probe Method , 2015, IEEE Access.

[43]  T. Peter,et al.  A novel technique to improve gain in transparent UWB antennas , 2011, 2011 Loughborough Antennas & Propagation Conference.

[44]  Okan Yurduseven,et al.  A transparent meshed solar monopole antenna for UWB applications , 2014, The 8th European Conference on Antennas and Propagation (EuCAP 2014).

[45]  Jason Ramin Saberin Optically transparent antennas for small satellites , 2010 .

[46]  Xingzhong Zhao,et al.  Comprehensive investigation of structural, electrical, and optical properties for ZnO:Al films deposited at different substrate temperature and oxygen ambient , 2008 .

[47]  Jesús A Arellano,et al.  Analysis and Design of Highly Transparent Meshed Patch Antenna Backed by a Solid Ground Plane , 2017 .

[48]  Tursunjan Yasin Optically Transparent Multifunctional Patch Antennas Integrated with Solar Cells for Small Satellites , 2011 .

[49]  F. Colombel,et al.  Ultrathin metal layer, ITO film and ITO/Cu/ITO multilayer towards transparent antenna , 2009 .

[50]  Jinho Bae,et al.  Inkjet printed transparent and bendable patch antenna based on polydimethylsiloxane and indium tin oxide nanoparticles , 2016 .

[51]  Yusuf Selamet,et al.  High quality ITO thin films grown by dc and RF sputtering without oxygen , 2010 .

[52]  C. Furse,et al.  Challenges with Optically Transparent Patch Antennas , 2012, IEEE Antennas and Propagation Magazine.

[53]  J. James,et al.  Microstrip window array , 1988 .

[54]  Richard J. Langley,et al.  Gridded circular patch antennas , 1999 .

[55]  Vladimir M. Shalaev,et al.  Optical Properties of Gallium-Doped Zinc Oxide—A Low-Loss Plasmonic Material: First-Principles Theory and Experiment , 2013 .

[56]  R. Langley,et al.  Meshed patch antennas , 2004, IEEE Transactions on Antennas and Propagation.

[57]  A. Sanchez-Juarez,et al.  Properties of fluorine-doped ZnO deposited onto glass by spray pyrolysis , 1998 .

[58]  B. Levin Transparent antennas , 2011, 2011 XVIth International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory (DIPED).

[59]  Ruben K. Hovsepyan,et al.  Absorption and reflection analysis of transparent conductive Ga-doped ZnO films , 2004 .

[60]  Elizabeth Mabrouk What are SmallSats and CubeSats , 2015 .

[61]  H. Morkoç,et al.  Highly conductive and optically transparent GZO films grown under metal‐rich conditions by plasma assisted MBE , 2010 .

[62]  Kenji Ebihara,et al.  Effects of substrate temperature on the properties of Ga-doped ZnO by pulsed laser deposition , 2006 .

[63]  S. Porntheeraphat,et al.  ITO Thin Films prepared by Gas-Timing RF Magnetron Sputtering for Transparent Flexible Antenna , 2007, 2007 2nd IEEE International Conference on Nano/Micro Engineered and Molecular Systems.

[64]  G. Sun,et al.  A study of microstrip antenna made of transparent ITO films , 2014, 2014 IEEE Antennas and Propagation Society International Symposium (APSURSI).

[65]  Akio Suzuki,et al.  Highly conducting transparent indium tin oxide films prepared by pulsed laser deposition , 2002 .

[66]  S. Ray Optical and Dielectric Properties of ZnO Nanostructures at Terahertz Frequencies , 2006 .

[67]  M. Drissi,et al.  Novel ITO alloy for microwave and optical applications , 2005, 48th Midwest Symposium on Circuits and Systems, 2005..

[68]  Hadis Morkoç,et al.  Transparent conducting oxides for electrode applications in light emitting and absorbing devices , 2010 .

[69]  S. W. Cheung,et al.  Optically Transparent Dual-Band MIMO Antenna Using Micro-Metal Mesh Conductive Film for WLAN System , 2017, IEEE Antennas and Wireless Propagation Letters.

[70]  Hyok J. Song,et al.  Optically transparent Ku-band silver nanowire frequency selective surface on glass substrate , 2014, 2014 IEEE Antennas and Propagation Society International Symposium (APSURSI).

[71]  Christos G. Christodoulou,et al.  Optimization of AZO films for integrating optically transparent antennas with photovoltaics , 2017 .

[72]  Ting-You Chen,et al.  The characteristic of GZO thin film deposited on flexible substrates by using RF magnetron sputtering , 2014, 2014 21st International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD).

[73]  H. El-Henawy,et al.  Meshed conductor and meshed substrate GPS L1 band microstrip antenna for Cubesat applications , 2018, 2018 35th National Radio Science Conference (NRSC).

[74]  M. Himdi,et al.  Optically transparent frequency-agile antenna for X-band applications , 2015 .